Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 143
Filtrar
1.
Cell ; 186(15): 3307-3324.e30, 2023 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-37385249

RESUMEN

The ability to map trafficking for thousands of endogenous proteins at once in living cells would reveal biology currently invisible to both microscopy and mass spectrometry. Here, we report TransitID, a method for unbiased mapping of endogenous proteome trafficking with nanometer spatial resolution in living cells. Two proximity labeling (PL) enzymes, TurboID and APEX, are targeted to source and destination compartments, and PL with each enzyme is performed in tandem via sequential addition of their small-molecule substrates. Mass spectrometry identifies the proteins tagged by both enzymes. Using TransitID, we mapped proteome trafficking between cytosol and mitochondria, cytosol and nucleus, and nucleolus and stress granules (SGs), uncovering a role for SGs in protecting the transcription factor JUN from oxidative stress. TransitID also identifies proteins that signal intercellularly between macrophages and cancer cells. TransitID offers a powerful approach for distinguishing protein populations based on compartment or cell type of origin.


Asunto(s)
Mitocondrias , Proteoma , Proteoma/metabolismo , Mitocondrias/metabolismo , Nucléolo Celular/metabolismo , Espectrometría de Masas/métodos , Regulación de la Expresión Génica
2.
Cell ; 181(2): 325-345.e28, 2020 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-32302571

RESUMEN

The mechanisms underlying ribonucleoprotein (RNP) granule assembly, including the basis for establishing and maintaining RNP granules with distinct composition, are unknown. One prominent type of RNP granule is the stress granule (SG), a dynamic and reversible cytoplasmic assembly formed in eukaryotic cells in response to stress. Here, we show that SGs assemble through liquid-liquid phase separation (LLPS) arising from interactions distributed unevenly across a core protein-RNA interaction network. The central node of this network is G3BP1, which functions as a molecular switch that triggers RNA-dependent LLPS in response to a rise in intracellular free RNA concentrations. Moreover, we show that interplay between three distinct intrinsically disordered regions (IDRs) in G3BP1 regulates its intrinsic propensity for LLPS, and this is fine-tuned by phosphorylation within the IDRs. Further regulation of SG assembly arises through positive or negative cooperativity by extrinsic G3BP1-binding factors that strengthen or weaken, respectively, the core SG network.


Asunto(s)
Gránulos Citoplasmáticos/metabolismo , ADN Helicasas/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Ribonucleoproteínas/metabolismo , Línea Celular Tumoral , Citoplasma/metabolismo , Estructuras Citoplasmáticas/metabolismo , Células HEK293 , Humanos , Fosforilación , ARN/metabolismo
3.
Cell ; 173(4): 958-971.e17, 2018 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-29628143

RESUMEN

Defects in nucleocytoplasmic transport have been identified as a key pathogenic event in amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) mediated by a GGGGCC hexanucleotide repeat expansion in C9ORF72, the most common genetic cause of ALS/FTD. Furthermore, nucleocytoplasmic transport disruption has also been implicated in other neurodegenerative diseases with protein aggregation, suggesting a shared mechanism by which protein stress disrupts nucleocytoplasmic transport. Here, we show that cellular stress disrupts nucleocytoplasmic transport by localizing critical nucleocytoplasmic transport factors into stress granules, RNA/protein complexes that play a crucial role in ALS pathogenesis. Importantly, inhibiting stress granule assembly, such as by knocking down Ataxin-2, suppresses nucleocytoplasmic transport defects as well as neurodegeneration in C9ORF72-mediated ALS/FTD. Our findings identify a link between stress granule assembly and nucleocytoplasmic transport, two fundamental cellular processes implicated in the pathogenesis of C9ORF72-mediated ALS/FTD and other neurodegenerative diseases.


Asunto(s)
Transporte Activo de Núcleo Celular/fisiología , Esclerosis Amiotrófica Lateral/patología , Ataxina-2/metabolismo , Proteína C9orf72/genética , Demencia Frontotemporal/patología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Anciano , Esclerosis Amiotrófica Lateral/metabolismo , Arsenitos/toxicidad , Ataxina-2/antagonistas & inhibidores , Ataxina-2/genética , Proteína C9orf72/metabolismo , Expansión de las Repeticiones de ADN/genética , Femenino , Demencia Frontotemporal/metabolismo , Células HEK293 , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Persona de Mediana Edad , Proteínas de Complejo Poro Nuclear/metabolismo , Estrés Oxidativo/efectos de los fármacos , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Compuestos de Sodio/toxicidad , alfa Carioferinas/antagonistas & inhibidores , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , beta Carioferinas/antagonistas & inhibidores , beta Carioferinas/genética , beta Carioferinas/metabolismo , Proteína de Unión al GTP ran/antagonistas & inhibidores , Proteína de Unión al GTP ran/genética , Proteína de Unión al GTP ran/metabolismo
4.
Cell ; 173(3): 677-692.e20, 2018 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-29677512

RESUMEN

RNA-binding proteins (RBPs) with prion-like domains (PrLDs) phase transition to functional liquids, which can mature into aberrant hydrogels composed of pathological fibrils that underpin fatal neurodegenerative disorders. Several nuclear RBPs with PrLDs, including TDP-43, FUS, hnRNPA1, and hnRNPA2, mislocalize to cytoplasmic inclusions in neurodegenerative disorders, and mutations in their PrLDs can accelerate fibrillization and cause disease. Here, we establish that nuclear-import receptors (NIRs) specifically chaperone and potently disaggregate wild-type and disease-linked RBPs bearing a NLS. Karyopherin-ß2 (also called Transportin-1) engages PY-NLSs to inhibit and reverse FUS, TAF15, EWSR1, hnRNPA1, and hnRNPA2 fibrillization, whereas Importin-α plus Karyopherin-ß1 prevent and reverse TDP-43 fibrillization. Remarkably, Karyopherin-ß2 dissolves phase-separated liquids and aberrant fibrillar hydrogels formed by FUS and hnRNPA1. In vivo, Karyopherin-ß2 prevents RBPs with PY-NLSs accumulating in stress granules, restores nuclear RBP localization and function, and rescues degeneration caused by disease-linked FUS and hnRNPA2. Thus, NIRs therapeutically restore RBP homeostasis and mitigate neurodegeneration.


Asunto(s)
Transporte Activo de Núcleo Celular , Priones/química , Proteínas de Unión al ARN/química , Receptores Citoplasmáticos y Nucleares/química , Adulto , Anciano , Animales , Citoplasma/química , Proteínas de Unión al ADN/química , Drosophila melanogaster , Femenino , Proteínas Fluorescentes Verdes/química , Células HEK293 , Células HeLa , Homeostasis , Humanos , Carioferinas/química , Masculino , Persona de Mediana Edad , Chaperonas Moleculares/química , Mutación , Enfermedades Neurodegenerativas/patología , Dominios Proteicos , Proteína EWS de Unión a ARN/química , Factores Asociados con la Proteína de Unión a TATA/química , beta Carioferinas/química
5.
Cell ; 167(3): 774-788.e17, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768896

RESUMEN

Expansion of a hexanucleotide repeat GGGGCC (G4C2) in C9ORF72 is the most common cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Transcripts carrying (G4C2) expansions undergo unconventional, non-ATG-dependent translation, generating toxic dipeptide repeat (DPR) proteins thought to contribute to disease. Here, we identify the interactome of all DPRs and find that arginine-containing DPRs, polyGly-Arg (GR) and polyPro-Arg (PR), interact with RNA-binding proteins and proteins with low complexity sequence domains (LCDs) that often mediate the assembly of membrane-less organelles. Indeed, most GR/PR interactors are components of membrane-less organelles such as nucleoli, the nuclear pore complex and stress granules. Genetic analysis in Drosophila demonstrated the functional relevance of these interactions to DPR toxicity. Furthermore, we show that GR and PR altered phase separation of LCD-containing proteins, insinuating into their liquid assemblies and changing their material properties, resulting in perturbed dynamics and/or functions of multiple membrane-less organelles.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Dipéptidos/metabolismo , Demencia Frontotemporal/metabolismo , Proteínas/metabolismo , Proteínas de Unión al ARN/metabolismo , Esclerosis Amiotrófica Lateral/genética , Animales , Proteína C9orf72 , Nucléolo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Expansión de las Repeticiones de ADN , Dipéptidos/genética , Drosophila melanogaster/genética , Demencia Frontotemporal/genética , Humanos , Membranas Intracelulares/metabolismo , Poro Nuclear/metabolismo , Péptidos/genética , Péptidos/metabolismo , Proteínas/genética
6.
Cell ; 163(1): 123-33, 2015 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-26406374

RESUMEN

Stress granules are membrane-less organelles composed of RNA-binding proteins (RBPs) and RNA. Functional impairment of stress granules has been implicated in amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy-diseases that are characterized by fibrillar inclusions of RBPs. Genetic evidence suggests a link between persistent stress granules and the accumulation of pathological inclusions. Here, we demonstrate that the disease-related RBP hnRNPA1 undergoes liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by a low complexity sequence domain (LCD). While the LCD of hnRNPA1 is sufficient to mediate LLPS, the RNA recognition motifs contribute to LLPS in the presence of RNA, giving rise to several mechanisms for regulating assembly. Importantly, while not required for LLPS, fibrillization is enhanced in protein-rich droplets. We suggest that LCD-mediated LLPS contributes to the assembly of stress granules and their liquid properties and provides a mechanistic link between persistent stress granules and fibrillar protein pathology in disease.


Asunto(s)
Gránulos Citoplasmáticos/química , Gránulos Citoplasmáticos/metabolismo , Agregación Patológica de Proteínas/metabolismo , Amiloide/metabolismo , Línea Celular Tumoral , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Células HeLa , Ribonucleoproteína Nuclear Heterogénea A1 , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/química , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Humanos
7.
Cell ; 154(4): 727-36, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23953108

RESUMEN

The molecular processes that contribute to degenerative diseases are not well understood. Recent observations suggest that some degenerative diseases are promoted by the accumulation of nuclear or cytoplasmic RNA-protein (RNP) aggregates, which can be related to endogenous RNP granules. RNP aggregates arise commonly in degenerative diseases because RNA-binding proteins commonly self-assemble, in part through prion-like domains, which can form self-propagating amyloids. RNP aggregates may be toxic due to multiple perturbations of posttranscriptional control, thereby disrupting the normal "ribostasis" of the cell. This suggests that understanding and modulating RNP assembly or clearance may be effective approaches to developing therapies for these diseases.


Asunto(s)
Enfermedades Neurodegenerativas/patología , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Animales , Gránulos Citoplasmáticos/metabolismo , Humanos , Enfermedades Neurodegenerativas/metabolismo , Pliegue de Proteína , ARN/química , ARN/metabolismo
8.
Cell ; 153(7): 1461-74, 2013 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-23791177

RESUMEN

Stress granules and P bodies are conserved cytoplasmic aggregates of nontranslating messenger ribonucleoprotein complexes (mRNPs) implicated in the regulation of mRNA translation and decay and are related to RNP granules in embryos, neurons, and pathological inclusions in some degenerative diseases. Using baker's yeast, 125 genes were identified in a genetic screen that affected the dynamics of P bodies and/or stress granules. Analyses of such mutants, including CDC48 alleles, provide evidence that stress granules can be targeted to the vacuole by autophagy, in a process termed granulophagy. Moreover, stress granule clearance in mammalian cells is reduced by inhibition of autophagy or by depletion or pathogenic mutations in valosin-containing protein (VCP), the human ortholog of CDC48. Because mutations in VCP predispose humans to amyotrophic lateral sclerosis, frontotemporal lobar degeneration, inclusion body myopathy, and multisystem proteinopathy, this work suggests that autophagic clearance of stress granule related and pathogenic RNP granules that arise in degenerative diseases may be important in reducing their pathology.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Autofagia , Proteínas de Ciclo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Ribonucleoproteínas/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Animales , Proteínas de Ciclo Celular/genética , Embrión de Mamíferos/citología , Fibroblastos/citología , Fibroblastos/metabolismo , Células HeLa , Humanos , Ratones , Mutación , Estabilidad del ARN , ARN Mensajero/metabolismo , Ribonucleoproteínas/genética , Proteínas de Saccharomyces cerevisiae , Proteína que Contiene Valosina
9.
Mol Cell ; 79(4): 645-659.e9, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32692974

RESUMEN

Stress granules (SGs) are membrane-less ribonucleoprotein condensates that form in response to various stress stimuli via phase separation. SGs act as a protective mechanism to cope with acute stress, but persistent SGs have cytotoxic effects that are associated with several age-related diseases. Here, we demonstrate that the testis-specific protein, MAGE-B2, increases cellular stress tolerance by suppressing SG formation through translational inhibition of the key SG nucleator G3BP. MAGE-B2 reduces G3BP protein levels below the critical concentration for phase separation and suppresses SG initiation. Knockout of the MAGE-B2 mouse ortholog or overexpression of G3BP1 confers hypersensitivity of the male germline to heat stress in vivo. Thus, MAGE-B2 provides cytoprotection to maintain mammalian spermatogenesis, a highly thermosensitive process that must be preserved throughout reproductive life. These results demonstrate a mechanism that allows for tissue-specific resistance against stress and could aid in the development of male fertility therapies.


Asunto(s)
Gránulos Citoplasmáticos/genética , ADN Helicasas/genética , Proteínas de Unión a Poli-ADP-Ribosa/genética , Biosíntesis de Proteínas , ARN Helicasas/genética , Proteínas con Motivos de Reconocimiento de ARN/genética , Estrés Fisiológico/genética , Regiones no Traducidas 5' , Animales , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Gránulos Citoplasmáticos/metabolismo , Gránulos Citoplasmáticos/patología , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/metabolismo , Femenino , Células HCT116 , Células HeLa , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Espermatogonias/citología , Espermatogonias/patología , Testículo/citología , Testículo/metabolismo
10.
Mol Cell ; 74(4): 713-728.e6, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30981631

RESUMEN

Repeat expansion in the C9orf72 gene is the most common cause of the neurodegenerative disorder amyotrophic lateral sclerosis (C9-ALS) and is linked to the unconventional translation of five dipeptide-repeat polypeptides (DPRs). The two enriched in arginine, poly(GR) and poly(PR), infiltrate liquid-like nucleoli, co-localize with the nucleolar protein nucleophosmin (NPM1), and alter the phase separation behavior of NPM1 in vitro. Here, we show that poly(PR) DPRs bind tightly to a long acidic tract within the intrinsically disordered region of NPM1, altering its phase separation with nucleolar partners to the extreme of forming large, soluble complexes that cause droplet dissolution in vitro. In cells, poly(PR) DPRs disperse NPM1 from nucleoli and entrap rRNA in static condensates in a DPR-length-dependent manner. We propose that R-rich DPR toxicity involves disrupting the role of phase separation by NPM1 in organizing ribosomal proteins and RNAs within the nucleolus.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Proteína C9orf72/genética , Proteínas Nucleares/genética , Secuencias Repetitivas de Aminoácido/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/genética , Nucléolo Celular/química , Nucléolo Celular/genética , Dipéptidos/genética , Humanos , Nucleofosmina , Péptidos/genética , Poli A/genética , ARN Ribosómico/genética
11.
Mol Cell ; 74(4): 742-757.e8, 2019 05 16.
Artículo en Inglés | MEDLINE | ID: mdl-30979586

RESUMEN

Disturbances in autophagy and stress granule dynamics have been implicated as potential mechanisms underlying inclusion body myopathy (IBM) and related disorders. Yet the roles of core autophagy proteins in IBM and stress granule dynamics remain poorly characterized. Here, we demonstrate that disrupted expression of the core autophagy proteins ULK1 and ULK2 in mice causes a vacuolar myopathy with ubiquitin and TDP-43-positive inclusions; this myopathy is similar to that caused by VCP/p97 mutations, the most common cause of familial IBM. Mechanistically, we show that ULK1/2 localize to stress granules and phosphorylate VCP, thereby increasing VCP's activity and ability to disassemble stress granules. These data suggest that VCP dysregulation and defective stress granule disassembly contribute to IBM-like disease in Ulk1/2-deficient mice. In addition, stress granule disassembly is accelerated by an ULK1/2 agonist, suggesting ULK1/2 as targets for exploiting the higher-order regulation of stress granules for therapeutic intervention of IBM and related disorders.


Asunto(s)
Homólogo de la Proteína 1 Relacionada con la Autofagia/genética , Enfermedades por Almacenamiento Lisosomal/genética , Enfermedades Musculares/genética , Proteínas Serina-Treonina Quinasas/genética , Proteína que Contiene Valosina/genética , Adenosina Trifosfatasas/genética , Animales , Autofagia/genética , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Humanos , Cuerpos de Inclusión/genética , Cuerpos de Inclusión/patología , Enfermedades por Almacenamiento Lisosomal/metabolismo , Enfermedades por Almacenamiento Lisosomal/patología , Ratones , Enfermedades Musculares/metabolismo , Enfermedades Musculares/patología , Fosforilación/genética , Estrés Fisiológico/genética , Ubiquitina/genética
12.
Nature ; 588(7838): 459-465, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32866962

RESUMEN

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Asunto(s)
Microglía/metabolismo , Microglía/patología , Neuronas/metabolismo , Neuronas/patología , Progranulinas/deficiencia , Proteinopatías TDP-43/metabolismo , Proteinopatías TDP-43/patología , Envejecimiento/genética , Envejecimiento/patología , Animales , Núcleo Celular/genética , Núcleo Celular/patología , Activación de Complemento/efectos de los fármacos , Activación de Complemento/inmunología , Complemento C1q/antagonistas & inhibidores , Complemento C1q/inmunología , Complemento C3b/antagonistas & inhibidores , Complemento C3b/inmunología , Medios de Cultivo Condicionados/química , Medios de Cultivo Condicionados/farmacología , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Poro Nuclear/metabolismo , Poro Nuclear/patología , Progranulinas/genética , RNA-Seq , Análisis de la Célula Individual , Proteinopatías TDP-43/tratamiento farmacológico , Proteinopatías TDP-43/genética , Tálamo/metabolismo , Tálamo/patología , Transcriptoma
13.
Mol Cell ; 69(6): 965-978.e6, 2018 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-29526694

RESUMEN

Under stress, certain eukaryotic proteins and RNA assemble to form membraneless organelles known as stress granules. The most well-studied stress granule components are RNA-binding proteins that undergo liquid-liquid phase separation (LLPS) into protein-rich droplets mediated by intrinsically disordered low-complexity domains (LCDs). Here we show that stress granules include proteasomal shuttle factor UBQLN2, an LCD-containing protein structurally and functionally distinct from RNA-binding proteins. In vitro, UBQLN2 exhibits LLPS at physiological conditions. Deletion studies correlate oligomerization with UBQLN2's ability to phase-separate and form stress-induced cytoplasmic puncta in cells. Using nuclear magnetic resonance (NMR) spectroscopy, we mapped weak, multivalent interactions that promote UBQLN2 oligomerization and LLPS. Ubiquitin or polyubiquitin binding, obligatory for UBQLN2's biological functions, eliminates UBQLN2 LLPS, thus serving as a switch between droplet and disperse phases. We postulate that UBQLN2 LLPS enables its recruitment to stress granules, where its interactions with ubiquitinated substrates reverse LLPS to enable shuttling of clients out of stress granules.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Estrés Fisiológico , Ubiquitinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Relacionadas con la Autofagia , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Femenino , Células HeLa , Humanos , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Modelos Moleculares , Agregación Patológica de Proteínas , Unión Proteica , Conformación Proteica , Dominios Proteicos , Pliegue de Proteína , Relación Estructura-Actividad , Ubiquitinas/química , Ubiquitinas/genética
14.
Mol Cell ; 65(6): 1044-1055.e5, 2017 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-28306503

RESUMEN

Liquid-liquid phase separation (LLPS) of RNA-binding proteins plays an important role in the formation of multiple membrane-less organelles involved in RNA metabolism, including stress granules. Defects in stress granule homeostasis constitute a cornerstone of ALS/FTLD pathogenesis. Polar residues (tyrosine and glutamine) have been previously demonstrated to be critical for phase separation of ALS-linked stress granule proteins. We now identify an active role for arginine-rich domains in these phase separations. Moreover, arginine-rich dipeptide repeats (DPRs) derived from C9orf72 hexanucleotide repeat expansions similarly undergo LLPS and induce phase separation of a large set of proteins involved in RNA and stress granule metabolism. Expression of arginine-rich DPRs in cells induced spontaneous stress granule assembly that required both eIF2α phosphorylation and G3BP. Together with recent reports showing that DPRs affect nucleocytoplasmic transport, our results point to an important role for arginine-rich DPRs in the pathogenesis of C9orf72 ALS/FTLD.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Arginina/metabolismo , Gránulos Citoplasmáticos/metabolismo , Dipéptidos/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas/metabolismo , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/patología , Arginina/química , Proteína C9orf72 , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Gránulos Citoplasmáticos/patología , ADN Helicasas , Dipéptidos/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Células HeLa , Humanos , Proteínas Intrínsecamente Desordenadas/química , Gotas Lipídicas/metabolismo , Fosforilación , Proteínas de Unión a Poli-ADP-Ribosa , Dominios Proteicos , Proteínas/química , ARN/metabolismo , ARN Helicasas , Proteínas con Motivos de Reconocimiento de ARN , Factores de Tiempo , Transfección
15.
RNA ; 28(1): 97-113, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34706979

RESUMEN

The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Condensados Biomoleculares/química , Gránulos de Ribonucleoproteínas Citoplasmáticas/química , Demencia Frontotemporal/genética , Proteínas de Unión al ARN/química , ARN/química , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Sitios de Unión , Condensados Biomoleculares/metabolismo , Muerte Celular/genética , Gránulos de Ribonucleoproteínas Citoplasmáticas/genética , Gránulos de Ribonucleoproteínas Citoplasmáticas/metabolismo , Demencia Frontotemporal/metabolismo , Demencia Frontotemporal/patología , Humanos , Simulación de Dinámica Molecular , Mutación , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Neuronas/patología , Transición de Fase , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/química , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo
16.
Nature ; 563(7732): 508-513, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464263

RESUMEN

A dominant histopathological feature in neuromuscular diseases, including amyotrophic lateral sclerosis and inclusion body myopathy, is cytoplasmic aggregation of the RNA-binding protein TDP-43. Although rare mutations in TARDBP-the gene that encodes TDP-43-that lead to protein misfolding often cause protein aggregation, most patients do not have any mutations in TARDBP. Therefore, aggregates of wild-type TDP-43 arise in most patients by an unknown mechanism. Here we show that TDP-43 is an essential protein for normal skeletal muscle formation that unexpectedly forms cytoplasmic, amyloid-like oligomeric assemblies, which we call myo-granules, during regeneration of skeletal muscle in mice and humans. Myo-granules bind to mRNAs that encode sarcomeric proteins and are cleared as myofibres mature. Although myo-granules occur during normal skeletal-muscle regeneration, myo-granules can seed TDP-43 amyloid fibrils in vitro and are increased in a mouse model of inclusion body myopathy. Therefore, increased assembly or decreased clearance of functionally normal myo-granules could be the source of cytoplasmic TDP-43 aggregates that commonly occur in neuromuscular disease.


Asunto(s)
Amiloide/metabolismo , Proteínas de Unión al ADN/metabolismo , Músculo Esquelético/fisiología , ARN Mensajero/metabolismo , Regeneración , Proteinopatías TDP-43/metabolismo , Amiloide/química , Amiloide/genética , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Animales , Citoplasma/metabolismo , Proteínas de Unión al ADN/química , Femenino , Humanos , Masculino , Ratones , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , ARN Mensajero/genética , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Sarcómeros/metabolismo , Proteinopatías TDP-43/patología
17.
Nature ; 544(7650): 367-371, 2017 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-28405022

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a rapidly progressing neurodegenerative disease that is characterized by motor neuron loss and that leads to paralysis and death 2-5 years after disease onset. Nearly all patients with ALS have aggregates of the RNA-binding protein TDP-43 in their brains and spinal cords, and rare mutations in the gene encoding TDP-43 can cause ALS. There are no effective TDP-43-directed therapies for ALS or related TDP-43 proteinopathies, such as frontotemporal dementia. Antisense oligonucleotides (ASOs) and RNA-interference approaches are emerging as attractive therapeutic strategies in neurological diseases. Indeed, treatment of a rat model of inherited ALS (caused by a mutation in Sod1) with ASOs against Sod1 has been shown to substantially slow disease progression. However, as SOD1 mutations account for only around 2-5% of ALS cases, additional therapeutic strategies are needed. Silencing TDP-43 itself is probably not appropriate, given its critical cellular functions. Here we present a promising alternative therapeutic strategy for ALS that involves targeting ataxin-2. A decrease in ataxin-2 suppresses TDP-43 toxicity in yeast and flies, and intermediate-length polyglutamine expansions in the ataxin-2 gene increase risk of ALS. We used two independent approaches to test whether decreasing ataxin-2 levels could mitigate disease in a mouse model of TDP-43 proteinopathy. First, we crossed ataxin-2 knockout mice with TDP-43 (also known as TARDBP) transgenic mice. The decrease in ataxin-2 reduced aggregation of TDP-43, markedly increased survival and improved motor function. Second, in a more therapeutically applicable approach, we administered ASOs targeting ataxin-2 to the central nervous system of TDP-43 transgenic mice. This single treatment markedly extended survival. Because TDP-43 aggregation is a component of nearly all cases of ALS, targeting ataxin-2 could represent a broadly effective therapeutic strategy.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/terapia , Ataxina-2/deficiencia , Proteínas de Unión al ADN/metabolismo , Longevidad , Oligonucleótidos Antisentido/uso terapéutico , Agregación Patológica de Proteínas/terapia , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Ataxina-2/genética , Sistema Nervioso Central/metabolismo , Gránulos Citoplasmáticos/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Progresión de la Enfermedad , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Destreza Motora/fisiología , Oligonucleótidos Antisentido/administración & dosificación , Oligonucleótidos Antisentido/genética , Agregación Patológica de Proteínas/genética , Estrés Fisiológico , Análisis de Supervivencia
18.
EMBO J ; 37(7)2018 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-29472250

RESUMEN

The transition between soluble intrinsically disordered tau protein and aggregated tau in neurofibrillary tangles in Alzheimer's disease is unknown. Here, we propose that soluble tau species can undergo liquid-liquid phase separation (LLPS) under cellular conditions and that phase-separated tau droplets can serve as an intermediate toward tau aggregate formation. We demonstrate that phosphorylated or mutant aggregation prone recombinant tau undergoes LLPS, as does high molecular weight soluble phospho-tau isolated from human Alzheimer brain. Droplet-like tau can also be observed in neurons and other cells. We found that tau droplets become gel-like in minutes, and over days start to spontaneously form thioflavin-S-positive tau aggregates that are competent of seeding cellular tau aggregation. Since analogous LLPS observations have been made for FUS, hnRNPA1, and TDP43, which aggregate in the context of amyotrophic lateral sclerosis, we suggest that LLPS represents a biophysical process with a role in multiple different neurodegenerative diseases.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Encéfalo/metabolismo , Neuronas/metabolismo , Agregación Patológica de Proteínas/metabolismo , Proteínas tau/química , Proteínas tau/aislamiento & purificación , Proteínas tau/metabolismo , Anciano de 80 o más Años , Secuencia de Aminoácidos , Animales , Benzotiazoles/metabolismo , Fenómenos Biofísicos , Clonación Molecular , Proteínas de Unión al ADN/metabolismo , Escherichia coli/genética , Femenino , Células HEK293 , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Humanos , Extracción Líquido-Líquido , Ratones , Ratones Transgénicos , Peso Molecular , Neuroblastoma/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Ovillos Neurofibrilares/metabolismo , Fosforilación , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análisis de Secuencia de Proteína , Células Sf9
19.
Genome Res ; 29(9): 1555-1565, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31439692

RESUMEN

Variant interpretation in the era of massively parallel sequencing is challenging. Although many resources and guidelines are available to assist with this task, few integrated end-to-end tools exist. Here, we present the Pediatric Cancer Variant Pathogenicity Information Exchange (PeCanPIE), a web- and cloud-based platform for annotation, identification, and classification of variations in known or putative disease genes. Starting from a set of variants in variant call format (VCF), variants are annotated, ranked by putative pathogenicity, and presented for formal classification using a decision-support interface based on published guidelines from the American College of Medical Genetics and Genomics (ACMG). The system can accept files containing millions of variants and handle single-nucleotide variants (SNVs), simple insertions/deletions (indels), multiple-nucleotide variants (MNVs), and complex substitutions. PeCanPIE has been applied to classify variant pathogenicity in cancer predisposition genes in two large-scale investigations involving >4000 pediatric cancer patients and serves as a repository for the expert-reviewed results. PeCanPIE was originally developed for pediatric cancer but can be easily extended for use for nonpediatric cancers and noncancer genetic diseases. Although PeCanPIE's web-based interface was designed to be accessible to non-bioinformaticians, its back-end pipelines may also be run independently on the cloud, facilitating direct integration and broader adoption. PeCanPIE is publicly available and free for research use.


Asunto(s)
Biología Computacional/métodos , Mutación de Línea Germinal , Neoplasias/genética , Niño , Nube Computacional , Bases de Datos Genéticas , Predisposición Genética a la Enfermedad , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Interfaz Usuario-Computador
20.
Nature ; 539(7628): 197-206, 2016 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-27830784

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/terapia , Animales , Transporte Biológico , Proteína C9orf72 , Estrés del Retículo Endoplásmico/genética , Demencia Frontotemporal/genética , Humanos , Sistema Nervioso/patología , Sistema Nervioso/fisiopatología , Orgánulos/genética , Orgánulos/metabolismo , Orgánulos/patología , Priones/metabolismo , Proteínas/genética , Proteínas/metabolismo , Proteolisis , ARN/biosíntesis , ARN/genética , ARN/metabolismo , ARN/toxicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda