Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
J Pharmacokinet Pharmacodyn ; 42(6): 659-79, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26259721

RESUMEN

Safety pharmacology studies are performed to assess whether compounds may provoke severe arrhythmias (e.g. Torsades de Pointes, TdP) and sudden death in man. Although there is strong evidence that drugs inducing TdP in man prolong the QT interval in vivo and block the human ether-a-go-go-related gene (hERG) ion channel in vitro, not all drugs affecting the QT interval or the hERG will induce TdP. Nevertheless, QT-interval prolongation and hERG blockade currently represent the most accepted early risk biomarkers to deselect drugs. An extensive pharmacokinetic/pharmacodynamic (PK/PD) analysis is developed to understand moxifloxacin's-induced effects on the QT interval by comparing the relationship between results of an in vitro patch-clamp model to in vivo models. The frequentist and the fully Bayesian estimation procedures were compared and provided similar performances when the best model selected in NONMEM is subsequently implemented in WinBUGS, which guarantees a straightforward calculation of the probability of QT-interval prolongation greater than 2.5 % (10 ms). The use of the percent threshold to account for the intrinsic differences between species and a new calculation of the probability curve are introduced. The concentration providing the 50 % probability indicates that dogs are more sensitive than humans to QT-interval prolongation. However, based on the drug effect, a clear distinction between species cannot be made. An operational PK/PD model of agonism was used to investigate the relationship between effects on the hERG and QT-interval prolongation in dogs. The proposed analysis contributes to establish a translational relationship that could potentially reduce the need for thorough QT studies.


Asunto(s)
Antibacterianos/toxicidad , Fluoroquinolonas/toxicidad , Sistema de Conducción Cardíaco/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Modelos Cardiovasculares , Modelos Estadísticos , Torsades de Pointes/inducido químicamente , Investigación Biomédica Traslacional , Potenciales de Acción , Animales , Antibacterianos/sangre , Antibacterianos/farmacocinética , Teorema de Bayes , Perros , Canal de Potasio ERG1 , Canales de Potasio Éter-A-Go-Go/antagonistas & inhibidores , Canales de Potasio Éter-A-Go-Go/genética , Canales de Potasio Éter-A-Go-Go/metabolismo , Femenino , Fluoroquinolonas/sangre , Fluoroquinolonas/farmacocinética , Células HEK293 , Sistema de Conducción Cardíaco/metabolismo , Sistema de Conducción Cardíaco/fisiopatología , Humanos , Modelos Animales , Moxifloxacino , Técnicas de Placa-Clamp , Bloqueadores de los Canales de Potasio/toxicidad , Ensayos Clínicos Controlados Aleatorios como Asunto , Medición de Riesgo , Especificidad de la Especie , Torsades de Pointes/diagnóstico , Torsades de Pointes/fisiopatología , Pruebas de Toxicidad , Transfección
2.
Front Pharmacol ; 15: 1308547, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38873414

RESUMEN

We investigated drug-induced acute neuronal electrophysiological changes using Micro-Electrode arrays (MEA) to rat primary neuronal cell cultures. Data based on 6-key MEA parameters were analyzed for plate-to-plate vehicle variability, effects of positive and negative controls, as well as data from over 100 reference drugs, mostly known to have pharmacological phenotypic and clinical outcomes. A Least Absolute Shrinkage and Selection Operator (LASSO) regression, coupled with expert evaluation helped to identify the 6-key parameters from many other MEA parameters to evaluate the drug-induced acute neuronal changes. Calculating the statistical tolerance intervals for negative-positive control effects on those 4-key parameters helped us to develop a new weighted hazard scoring system on drug-induced potential central nervous system (CNS) adverse effects (AEs). The weighted total score, integrating the effects of a drug candidate on the identified six-pivotal parameters, simply determines if the testing compound/concentration induces potential CNS AEs. Hereto, it uses four different categories of hazard scores: non-neuroactive, neuroactive, hazard, or high hazard categories. This new scoring system was successfully applied to differentiate the new compounds with or without CNS AEs, and the results were correlated with the outcome of in vivo studies in mice for one internal program. Furthermore, the Random Forest classification method was used to obtain the probability that the effect of a compound is either inhibitory or excitatory. In conclusion, this new neuronal scoring system on the cell assay is actively applied in the early de-risking of drug development and reduces the use of animals and associated costs.

3.
Biomolecules ; 13(9)2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37759755

RESUMEN

Loperamide has been a safe and effective treatment for diarrhea for many years. However, many cases of cardiotoxicity with intentional abuse of loperamide ingestion have recently been reported. We evaluated loperamide in in vitro and in vivo cardiac safety models to understand the mechanisms for this cardiotoxicity. Loperamide slowed conduction (QRS-duration) starting at 0.3 µM [~1200-fold (×) its human Free Therapeutic Plasma Concentration; FTPC] and reduced the QT-interval and caused cardiac arrhythmias starting at 3 µM (~12,000× FTPC) in an isolated rabbit ventricular-wedge model. Loperamide also slowed conduction and elicited Type II/III A-V block in anesthetized guinea pigs at overdose exposures of 879× and 3802× FTPC. In ion-channel studies, loperamide inhibited hERG (IKr), INa, and ICa currents with IC50 values of 0.390 µM, 0.526 µM, and 4.091 µM, respectively (i.e., >1560× FTPC). Additionally, in silico trials in human ventricular action potential models based on these IC50s confirmed that loperamide has large safety margins at therapeutic exposures (≤600× FTPC) and confirmed repolarization abnormalities in the case of extreme doses of loperamide. The studies confirmed the large safety margin for the therapeutic use of loperamide but revealed that at the extreme exposure levels observed in human overdose, loperamide can cause a combination of conduction slowing and alterations in repolarization time, resulting in cardiac proarrhythmia. Loperamide's inhibition of the INa channel and hERG-mediated IKr are the most likely basis for this cardiac electrophysiological toxicity at overdose exposures. The cardiac toxic effects of loperamide at the overdoses could be aggravated by co-medication with other drug(s) causing ion channel inhibition.


Asunto(s)
Cardiotoxicidad , Loperamida , Humanos , Animales , Cobayas , Conejos , Loperamida/toxicidad , Cardiotoxicidad/etiología , Arritmias Cardíacas/inducido químicamente , Corazón , Diarrea
4.
Cells ; 12(6)2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36980298

RESUMEN

Drug-induced seizure liability is a significant safety issue and the basis for attrition in drug development. Occurrence in late development results in increased costs, human risk, and delayed market availability of novel therapeutics. Therefore, there is an urgent need for biologically relevant, in vitro high-throughput screening assays (HTS) to predict potential risks for drug-induced seizure early in drug discovery. We investigated drug-induced changes in neural Ca2+ oscillations, using fluorescent dyes as a potential indicator of seizure risk, in hiPSC-derived neurons co-cultured with human primary astrocytes in both 2D and 3D forms. The dynamics of synchronized neuronal calcium oscillations were measured with an FDSS kinetics reader. Drug responses in synchronized Ca2+ oscillations were recorded in both 2D and 3D hiPSC-derived neuron/primary astrocyte co-cultures using positive controls (4-aminopyridine and kainic acid) and negative control (acetaminophen). Subsequently, blinded tests were carried out for 25 drugs with known clinical seizure incidence. Positive predictive value (accuracy) based on significant changes in the peak number of Ca2+ oscillations among 25 reference drugs was 91% in 2D vs. 45% in 3D hiPSC-neuron/primary astrocyte co-cultures. These data suggest that drugs that alter neuronal activity and may have potential risk for seizures can be identified with high accuracy using an HTS approach using the measurements of Ca2+ oscillations in hiPSC-derived neurons co-cultured with primary astrocytes in 2D.


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Células Cultivadas , Ensayos Analíticos de Alto Rendimiento , Neuronas , Convulsiones/inducido químicamente
5.
Front Physiol ; 13: 838435, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35547580

RESUMEN

Introduction: Early identification of cardiac risk is essential for reducing late-stage attrition in drug development. We adapted the previously published cardiac hazard risk-scoring system using a calcium transient assay in human stem cell-derived CMs for the identification of cardiac risks recorded from the new hiPSC-CM line and investigated its predictivity and translational value based on the screening of a large number of reference and proprietary compounds. Methods: Evaluation of 55 reference drugs provided the translation of various pharmacological effects into a single hazard label (no, low, high, or very high hazard) using a Ca2+-sensitive fluorescent dye assay recorded by -by FDSS/µCell Functional Drug Screening System (Hamamatsu on hiPSC-CM line (FCDI iCell Cardiomyocytes2). Results: Application of the adapted hazard scoring system in the Ca2+ transient assay, using a second hiPS-CM line, provided comparable scoring results and predictivity of hazard, to the previously published scoring approach, with different pharmacological drug classes, as well as screening new chemical entities (NCE's) using a single hazard label from four different scoring levels (no, low, high, or very high hazard). The scoring system results also showed minimal variability across three different lots of hiPSC-CMs, indicating good reproducibility of the cell line. The predictivity values (sensitivity and specificity) for drug-induced acute cardiac risk for QT-interval prolongation and Torsade de pointes (TdPs) were >95% and statistical modeling confirmed the prediction of proarrhythmic risk. The outcomes of the NCEs also showed consistency with findings in other well-established in vitro and in vivo cardiac risk assays. Conclusion: Evaluation of a large list of reference compounds and internal NCEs has confirmed the applicability of the adaptations made to the previously published novel scoring system for the hiPSC-CMs. The validation also established the predictivity for drug-induced cardiac risks with good translation to other established preclinical in vitro and in vivo assays, confirming the application of this novel scoring system in different stem cell-CM lines for early cardiac hazard identification.

6.
Eur J Pharmacol ; 931: 175189, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35987255

RESUMEN

BACKGROUND: Functional network activity is a characteristic for neuronal cells, and the complexity of the network activity represents the necessary substrate to support complex brain functions. Drugs that drastically increase the neuronal network activity may have a potential higher risk for seizures in human. Although there has been some recent considerable progress made using cultures from different types of human-induced pluripotent stem cell (hiPSC) derived neurons, one of the primary limitations is the lack of - or very low - network activity. METHOD: In the present study, we investigated whether the limited neuronal network activity in commercial hiPSC-neurons (CNS.4U®) is capable of detecting drug-induced potential seizure risks. Therefore, we compared the hiPSC-results to those in rat primary neurons with known high neuronal network activity in vitro. RESULTS: Gene expression and electrical activity from in vitro developing neuronal networks were assessed at multiple time-points. Transcriptomes of 7, 28, and 50 days in vitro were analyzed and compared to those from human brain tissues. Data from measurements of electrical activity using multielectrode arrays (MEAs) indicate that neuronal networks matured gradually over time, albeit in hiPSC this developed slower than rat primary cultures. The response of neuronal networks to neuronal active reference drugs modulating glutamatergic, acetylcholinergic and GABAergic pathways could be detected in both hiPSC-neurons and rat primary neurons. However, in comparison, GABAergic responses were limited in hiPSC-neurons. CONCLUSION: Overall, despite a slower network development and lower network activity, CNS.4U® hiPSC-neurons can be used to detect drug induced changes in neuronal network activity, as shown by well-known seizurogenic drugs (affecting e.g., the Glycine receptor and Na+ channel). However, lower sensitivity to GABA antagonists has been observed.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Células Cultivadas , Humanos , Neuronas/metabolismo , Ratas , Convulsiones/inducido químicamente , Convulsiones/metabolismo , Transmisión Sináptica
7.
J Pharmacol Toxicol Methods ; 111: 107086, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34119674

RESUMEN

INTRODUCTION: People with epilepsy are at heightened risk of sudden death compared to the general population. The leading cause of epilepsy-related premature mortality is a sudden unexpected death in epilepsy (SUDEP). The mechanism of SUDEP remains largely unresolved and the lack of preclinical models to study the potential mechanism underlying SUDEP is a problem. METHOD: By combining electroencephalographic (EEG) and electrocardiogram (ECG) measurements within a well described LQT1 dog model, we investigated the effect of the proconvulsive compound pentylenetetrazol (PTZ), and its link to the induction of Torsades de Pointes (TdP). RESULTS: Pre-treatment with the potent and selective IKs blocker JNJ 282 induced a pronounced QT (QTc) prolongation in anaesthetized dogs (Long QT syndrome type 1 or LQT1 group) compared to dogs that were not treated (control group). Subsequent PTZ administration induced spiking on the EEG signal and seizures in both groups, but only R-on-T, salvo and TdP were observed in dogs of the LQT1 group. CONCLUSION: Our results show that a proconvulsive drug can trigger TdP-like cardiac arrhythmias, in conditions of compromised repolarization in the heart (Iks blockade). In man, TdP arrythmia's can often lead to ventricular fibrillation (VF) and sudden death. This observation suggests that long QT-intervals (genetic or drug induced) could potentially be one of the risk factors for SUDEP in epileptic patients.


Asunto(s)
Síndrome de QT Prolongado , Preparaciones Farmacéuticas , Torsades de Pointes , Animales , Perros , Electrocardiografía , Humanos , Síndrome de QT Prolongado/inducido químicamente , Convulsiones/inducido químicamente , Torsades de Pointes/inducido químicamente
8.
Channels (Austin) ; 15(1): 239-252, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-33465001

RESUMEN

Human-induced pluripotent stem cell (hiPSC) and stem cell (hSC) derived cardiomyocytes (CM) are gaining popularity as in vitro model for cardiology and pharmacology studies. A remaining flaw of these cells, as shown by single-cell electrophysiological characterization, is a more depolarized resting membrane potential (RMP) compared to native CM. Most reports attribute this to a lower expression of the Kir2.1 potassium channel that generates the IK1 current. However, most RMP recordings are obtained from isolated hSC/hiPSC-CMs whereas in a more native setting these cells are interconnected with neighboring cells by connexin-based gap junctions, forming a syncytium. Hereby, these cells are electrically connected and the total pool of IK1 increases. Therefore, the input resistance (Ri) of interconnected cells is lower than that of isolated cells. During patch clamp experiments pipettes need to be well attached or sealed to the cell, which is reflected in the seal resistance (Rs), because a nonspecific ionic current can leak through this pipette-cell contact or seal and balance out small currents within the cell such as IK1. By recording the action potential of isolated hSC-CMs and that of hSC-CMs cultured in small monolayers, we show that the RMP of hSC-CMs in monolayer is approximately -20 mV more hyperpolarized compared to isolated cells. Accordingly, adding carbenoxolone, a connexin channel blocker, isolates the cell that is patch clamped from its neighboring cells of the monolayer and depolarizes the RMP. The presented data show that the recorded RMP of hSC-CMs in a syncytium is more negative than that determined from isolated hSC/hiPSC-CMs, most likely because the active pool of Kir2.1 channels increased.


Asunto(s)
Miocitos Cardíacos , Células Gigantes , Potenciales de la Membrana , Técnicas de Placa-Clamp , Potasio
9.
J Med Chem ; 64(19): 14175-14191, 2021 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-34553934

RESUMEN

The discovery of a novel 2-aminotetrahydropyridine class of BACE1 inhibitors is described. Their pKa and lipophilicity were modulated by a pending sulfonyl group, while good permeability and brain penetration were achieved via intramolecular hydrogen bonding. BACE1 selectivity over BACE2 was achieved in the S3 pocket by a novel bicyclic ring system. An optimization addressing reactive metabolite formation, cardiovascular safety, and CNS toxicity is described, leading to the clinical candidate JNJ-67569762 (12), which gave robust dose-dependent BACE1-mediated amyloid ß lowering without showing BACE2-dependent hair depigmentation in preclinical models. We show that 12 has a favorable projected human dose and PK and hence presented us with an opportunity to test a highly selective BACE1 inhibitor in humans. However, 12 was found to have a QT effect upon repeat dosing in dogs and its development was halted in favor of other selective leads, which will be reported in the future.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Descubrimiento de Drogas , Pirrolidinas/farmacología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Ácido Aspártico Endopeptidasas/metabolismo , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Humanos , Modelos Moleculares , Estructura Molecular , Pirrolidinas/síntesis química , Pirrolidinas/química , Relación Estructura-Actividad
10.
Clin Pharmacol Ther ; 109(2): 310-318, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32866317

RESUMEN

Defining an appropriate and efficient assessment of drug-induced corrected QT interval (QTc) prolongation (a surrogate marker of torsades de pointes arrhythmia) remains a concern of drug developers and regulators worldwide. In use for over 15 years, the nonclinical International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use (ICH) S7B and clinical ICH E14 guidances describe three core assays (S7B: in vitro hERG current & in vivo QTc studies; E14: thorough QT study) that are used to assess the potential of drugs to cause delayed ventricular repolarization. Incorporating these assays during nonclinical or human testing of novel compounds has led to a low prevalence of QTc-prolonging drugs in clinical trials and no new drugs having been removed from the marketplace due to unexpected QTc prolongation. Despite this success, nonclinical evaluations of delayed repolarization still minimally influence ICH E14-based strategies for assessing clinical QTc prolongation and defining proarrhythmic risk. In particular, the value of ICH S7B-based "double-negative" nonclinical findings (low risk for hERG block and in vivo QTc prolongation at relevant clinical exposures) is underappreciated. These nonclinical data have additional value in assessing the risk of clinical QTc prolongation when clinical evaluations are limited by heart rate changes, low drug exposures, or high-dose safety considerations. The time has come to meaningfully merge nonclinical and clinical data to enable a more comprehensive, but flexible, clinical risk assessment strategy for QTc monitoring discussed in updated ICH E14 Questions and Answers. Implementing a fully integrated nonclinical/clinical risk assessment for compounds with double-negative nonclinical findings in the context of a low prevalence of clinical QTc prolongation would relieve the burden of unnecessary clinical QTc studies and streamline drug development.


Asunto(s)
Drogas en Investigación/efectos adversos , Síndrome de QT Prolongado/inducido químicamente , Animales , Arritmias Cardíacas/inducido químicamente , Desarrollo de Medicamentos/métodos , Industria Farmacéutica/métodos , Electrocardiografía/métodos , Humanos , Medición de Riesgo , Torsades de Pointes/inducido químicamente
11.
J Comput Aided Mol Des ; 23(12): 883-95, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19890608

RESUMEN

As chemists can easily produce large numbers of new potential drug candidates, there is growing demand for high capacity models that can help in driving the chemistry towards efficacious and safe candidates before progressing towards more complex models. Traditionally, the cardiovascular (CV) safety domain plays an important role in this process, as many preclinical CV biomarkers seem to have high prognostic value for the clinical outcome. Throughout the industry, traditional ion channel binding data are generated to drive the early selection process. Although this assay can generate data at high capacity, it has the disadvantage of producing high numbers of false negatives. Therefore, our company applies the isolated guinea pig right atrium (GPRA) assay early-on in discovery. This functional multi-channel/multi-receptor model seems much more predictive in identifying potential CV liabilities. Unfortunately however, its capacity is limited, and there is no room for full automation. We assessed the correlation between ion channel binding and the GPRA's Rate of Contraction (RC), Contractile Force (CF), and effective refractory frequency (ERF) measures assay using over six thousand different data points. Furthermore, the existing experimental knowledge base was used to develop a set of in silico classification models attempting to mimic the GPRA inhibitory activity. The Naïve Bayesian classifier was used to built several models, using the ion channel binding data or in silico computed properties and structural fingerprints as descriptors. The models were validated on an independent and diverse test set of 200 reference compounds. Performances were assessed on the bases of their overall accuracy, sensitivity and specificity in detecting both active and inactive molecules. Our data show that all in silico models are highly predictive of actual GPRA data, at a level equivalent or superior to the ion channel binding assays. Furthermore, the models were interpreted in terms of the descriptors used to highlight the undesirable areas in the explored chemical space, specifically regions of low polarity, high lipophilicity and high molecular weight. In conclusion, we developed a predictive in silico model of a complex physiological assay based on a large and high quality set of experimental data. This model allows high throughput in silico safety screening based on chemical structure within a given chemical space.


Asunto(s)
Canales de Potasio Éter-A-Go-Go/metabolismo , Atrios Cardíacos/efectos de los fármacos , Animales , Diseño de Fármacos , Cobayas , Ligandos , Modelos Biológicos , Estructura Molecular , Contracción Miocárdica/efectos de los fármacos , Unión Proteica
12.
Front Pharmacol ; 10: 1374, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31920633

RESUMEN

The cardiac Nav1.5 mediated sodium current (INa) generates the upstroke of the action potential in atrial and ventricular myocytes. Drugs that modulate this current can therefore be antiarrhythmic or proarrhythmic, which requires preclinical evaluation of their potential drug-induced inhibition or modulation of Nav1.5. Since Nav1.5 assembles with, and is modulated by, the auxiliary ß1-subunit, this subunit can also affect the channel's pharmacological response. To investigate this, the effect of known Nav1.5 inhibitors was compared between COS-7 cells expressing Nav1.5 or Nav1.5+ß1 using whole-cell voltage clamp experiments. For the open state class Ia blockers ajmaline and quinidine, and class Ic drug flecainide, the affinity did not differ between both models. For class Ib drugs phenytoin and lidocaine, which are inactivated state blockers, the affinity decreased more than a twofold when ß1 was present. Thus, ß1 did not influence the affinity for the class Ia and Ic compounds but it did so for the class Ib drugs. Human stem cell-derived cardiomyocytes (hSC-CMs) are a promising translational cell source for in vitro models that express a representative repertoire of channels and auxiliary proteins, including ß1. Therefore, we subsequently evaluated the same drugs for their response on the INa in hSC-CMs. Consequently, it was expected and confirmed that the drug response of INa in hSC-CMs compares best to INa expressed by Nav1.5+ß1.

13.
Toxicol Sci ; 170(2): 345-356, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31020317

RESUMEN

The goal of this research consortium including Janssen, MSD, Ncardia, FNCR/LBR, and Health and Environmental Sciences Institute (HESI) was to evaluate the utility of an additional in vitro assay technology to detect potential drug-induced long QT and torsade de pointes (TdP) risk by monitoring cytosolic free Ca2+ transients in human stem-cell-derived cardiomyocytes (hSC-CMs). The potential proarrhythmic risks of the 28 comprehensive in vitro proarrhythmia assay (CiPA) drugs linked to low, intermediate, and high clinical TdP risk were evaluated in a blinded manner using Ca2+-sensitive fluorescent dye assay recorded from a kinetic plate reader system (Hamamatsu FDSS/µCell and FDSS7000) in 2D cultures of 2 commercially available hSC-CM lines (Cor.4U and CDI iCell Cardiomyocytes) at 3 different test sites. The Ca2+ transient assay, performed at the 3 sites using the 2 different hSC-CMs lines, correctly detected potential drug-induced QT prolongation among the 28 CiPA drugs and detected cellular arrhythmias-like/early afterdepolarization in 7 of 8 high TdP-risk drugs (87.5%), 6 of 11 intermediate TdP-risk drugs (54.5%), and 0 of 9 low/no TdP-risk drugs (0%). The results were comparable among the 3 sites and from 2 hSC-CM cell lines. The Ca2+ transient assay can serve as a user-friendly and higher throughput alternative to complement the microelectrode array and voltage-sensing optical action potential recording assays used in the HESI-CiPA study for in vitro assessment of drug-induced long QT and TdP risk.


Asunto(s)
Arritmias Cardíacas/inducido químicamente , Calcio/metabolismo , Síndrome de QT Prolongado/inducido químicamente , Miocitos Cardíacos/efectos de los fármacos , Células Cultivadas , Relación Dosis-Respuesta a Droga , Humanos , Miocitos Cardíacos/metabolismo , Riesgo , Células Madre/citología
14.
ChemMedChem ; 14(22): 1894-1910, 2019 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-31657130

RESUMEN

The ß-site amyloid precursor protein cleaving enzyme 1 (BACE1, also known as ß-secretase) is a promising target for the treatment of Alzheimer's disease. A pKa lowering approach over the initial leads was adopted to mitigate hERG inhibition and P-gp efflux, leading to the design of 6-CF3 dihydrothiazine 8 (N-(3-((4S,6S)-2-amino-4-methyl-6-(trifluoromethyl)-5,6-dihydro-4H-1,3-thiazin-4-yl)-4-fluorophenyl)-5-cyanopicolinamide). Optimization of 8 led to the discovery of 15 (N-(3-((4S,6S)-2-amino-4-methyl-6-(trifluoromethyl)-5,6-dihydro-4H-1,3-thiazin-4-yl)-4-fluorophenyl)-5-(fluoromethoxy)pyrazine-2-carboxamide) with an excellent balance of potency, hERG inhibition, P-gp efflux, and metabolic stability. Oral administration of 8 elicited robust Aß reduction in dog even at 0.16 mg/kg. Reflecting the reduced hERG inhibitory activity, no QTc prolongation was observed at high doses. The potential for reactive metabolite formation of 15 was realized in a nucleophile trapping assay using [14 C]-KCN in human liver microsomes. Utilizing covalent binding (CVB) in human hepatocytes and the maximum projected human dosage, the daily CVB burden of 15 was calculated to be at an acceptable value of below 1 mg/day. However, hepatotoxicity was observed when 15 was subjected to a two-week tolerance study in dog, which prevented further evaluation of this compound.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Péptidos beta-Amiloides/antagonistas & inhibidores , Ácido Aspártico Endopeptidasas/antagonistas & inhibidores , Oxazinas/farmacología , Tiazinas/farmacología , Secretasas de la Proteína Precursora del Amiloide/deficiencia , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Ácido Aspártico Endopeptidasas/deficiencia , Ácido Aspártico Endopeptidasas/metabolismo , Perros , Relación Dosis-Respuesta a Droga , Diseño de Fármacos , Hepatocitos/efectos de los fármacos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Estructura Molecular , Oxazinas/química , Ratas , Relación Estructura-Actividad , Tiazinas/administración & dosificación , Tiazinas/química
15.
J Med Chem ; 62(20): 9331-9337, 2019 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-31549838

RESUMEN

Genetic evidence points to deposition of amyloid-ß (Aß) as a causal factor for Alzheimer's disease. Aß generation is initiated when ß-secretase (BACE1) cleaves the amyloid precursor protein. Starting with an oxazine lead 1, we describe the discovery of a thiazine-based BACE1 inhibitor 5 with robust Aß reduction in vivo at low concentrations, leading to a low projected human dose of 14 mg/day where 5 achieved sustained Aß reduction of 80% at trough level.


Asunto(s)
Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Inhibidores de Proteasas/química , Tiazinas/química , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Citocromo P-450 CYP2C9/química , Citocromo P-450 CYP2C9/metabolismo , Perros , Evaluación Preclínica de Medicamentos , Femenino , Semivida , Haplorrinos , Corazón/efectos de los fármacos , Humanos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Inhibidores de Proteasas/farmacocinética , Inhibidores de Proteasas/farmacología , Ratas , Ratas Sprague-Dawley , Tiazinas/metabolismo , Tiazinas/farmacología
16.
J Biopharm Stat ; 18(6): 1043-62, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18991107

RESUMEN

Several pharmacological studies involve experiments aimed at testing for a difference between experimental groups wherein the data are longitudinal in nature, frequently with long sequences per subject. Oftentimes, treatment effect, if present, is not constant over time. In such situations, imposing a parametric mean structure can be too complicated and/or restrictive. A more flexible approach is to model the mean using a semiparametric smooth function, estimated using, for example, penalized smoothing splines. We formulate a series of models exhibiting how the group-specific mean profiles could possibly differ. Once an appropriate model is chosen, interest lies in identifying specific time points where the groups differ. For this purpose, we propose the use of simultaneous confidence bands around the fitted models wherein the bands take into account within and between-subject variability, as well as variability arising from smoothing.


Asunto(s)
Intervalos de Confianza , Interpretación Estadística de Datos , Evaluación Preclínica de Medicamentos/estadística & datos numéricos , Frecuencia Cardíaca/efectos de los fármacos , Síndrome de QT Prolongado/inducido químicamente , Modelos Estadísticos , Animales , Modelos Lineales , Síndrome de QT Prolongado/fisiopatología , Estudios Longitudinales , Modelos Animales , Reproducibilidad de los Resultados , Factores de Tiempo , Resultado del Tratamiento
17.
Artículo en Inglés | MEDLINE | ID: mdl-29421525

RESUMEN

INTRODUCTION: Calcium-based screening of hiPS-CMs is a useful preclinical safety evaluation platform with the ability to generate robust signals that facilitates high-throughput screening and data analysis. However, due to the potential inherent toxicities, it is important to understand potential effects of different calcium-sensitive dyes on the hiPS-CMs model. METHODS: We compared three calcium-sensitive fluorescence dyes (Cal520, ACTOne and Calcium 5) for their impact on the variability, the beating properties and the pharmacological responses of hiPS-CMs using the Hamamatsu FDSS/µCell imaging platform. Direct effects of three dyes on the electrophysiological properties of hiPS-CMs were evaluated with the multi-electrode array (MEA) Axion Maestro platform. RESULTS: We propose a specific experimental protocol for each dye which gives the most optimal assay conditions to minimize variability and possible adverse effects. We showed that Cal520 had the smallest effect on hiPS-CMs together with the longest-lasting stable amplitude signal (up to 4 h). Although all dyes had a (minor) acute effect on hiPS-CMs, in the form of reduced beat rate and prolonged field potential duration, the selection of the dye did not influence the pharmacological response of four cardioactive drugs (dofetilide, moxifloxacin, nimodipine and isoprenaline). DISCUSSION: In conclusion, we have documented that different calcium sensitive dyes have only minor direct (acute) effects on hiPS-CMs with Cal520 showing the least effects and the longest lasting signal amplitude. Importantly, drug-induced pharmacological responses in hiPS-CMs were comparable between the three dyes. These findings should help further improve the robustness of the hiPS-CMs-based calcium transient assay as a predictive, preclinical cardiac safety evaluation tool.


Asunto(s)
Potenciales de Acción/efectos de los fármacos , Calcio/metabolismo , Colorantes Fluorescentes/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Miocitos Cardíacos/efectos de los fármacos , Calcio/química , Fármacos Cardiovasculares/farmacología , Línea Celular , Evaluación Preclínica de Medicamentos/métodos , Electrodos , Colorantes Fluorescentes/química , Ensayos Analíticos de Alto Rendimiento/instrumentación , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Miocitos Cardíacos/fisiología , Factores de Tiempo
18.
Stem Cell Reports ; 11(6): 1365-1377, 2018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30540961

RESUMEN

Human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have emerged as a promising cardiac safety platform, demonstrated by numerous validation studies using drugs with known cardiac adverse effects in humans. However, the challenge remains to implement hiPSC-CMs into cardiac de-risking of new chemical entities (NCEs) during preclinical drug development. Here, we used the calcium transient screening assay in hiPSC-CMs to develop a hazard score system for cardiac electrical liabilities. Tolerance interval calculations and evaluation of different classes of cardio-active drugs enabled us to develop a weighted scoring matrix. This approach allowed the translation of various pharmacological effects in hiPSC-CMs into a single hazard label (no, low, high, or very high hazard). Evaluation of 587 internal NCEs and good translation to ex vivo and in vivo models for a subset of these NCEs highlight the value of the cardiac hazard scoring in facilitating the selection of compounds during early drug safety screening.


Asunto(s)
Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos/diagnóstico , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/citología , Algoritmos , Señalización del Calcio , Descubrimiento de Drogas , Humanos , Estándares de Referencia , Reproducibilidad de los Resultados , Riesgo
19.
Br J Pharmacol ; 174(21): 3766-3779, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28094846

RESUMEN

BACKGROUND AND PURPOSE: In the pharmaceutical industry risk assessments of chronic cardiac safety liabilities are mostly performed during late stages of preclinical drug development using in vivo animal models. Here, we explored the potential of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs) to detect chronic cardiac risks such as drug-induced cardiomyocyte toxicity. EXPERIMENTAL APPROACH: Video microscopy-based motion field imaging was applied to evaluate the chronic effect (over 72 h) of cardiotoxic drugs on the contractile motion of hiPS-CMs. In parallel, the release of cardiac troponin I (cTnI), heart fatty acid binding protein (FABP3) and N-terminal pro-brain natriuretic peptide (NT-proBNP) was analysed from cell medium, and transcriptional profiling of hiPS-CMs was done at the end of the experiment. KEY RESULTS: Different cardiotoxic drugs altered the contractile motion properties of hiPS-CMs together with increasing the release of cardiac biomarkers. FABP3 and cTnI were shown to be potential surrogates to predict cardiotoxicity in hiPS-CMs, whereas NT-proBNP seemed to be a less valuable biomarker. Furthermore, drug-induced cardiotoxicity produced by chronic exposure of hiPS-CMs to arsenic trioxide, doxorubicin or panobinostat was associated with different profiles of changes in contractile parameters, biomarker release and transcriptional expression. CONCLUSION AND IMPLICATIONS: We have shown that a parallel assessment of motion field imaging-derived contractile properties, release of biomarkers and transcriptional changes can detect diverse mechanisms of chronic drug-induced cardiac liabilities in hiPS-CMs. Hence, hiPS-CMs could potentially improve and accelerate cardiovascular de-risking of compounds at earlier stages of drug discovery. LINKED ARTICLES: This article is part of a themed section on New Insights into Cardiotoxicity Caused by Chemotherapeutic Agents. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.21/issuetoc.


Asunto(s)
Antineoplásicos/toxicidad , Cardiotoxicidad/etiología , Células Madre Pluripotentes Inducidas/citología , Miocitos Cardíacos/efectos de los fármacos , Trióxido de Arsénico , Arsenicales , Biomarcadores/metabolismo , Cardiotoxicidad/fisiopatología , Células Cultivadas , Doxorrubicina/toxicidad , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ácidos Hidroxámicos/toxicidad , Indoles/toxicidad , Microscopía por Video , Contracción Muscular/efectos de los fármacos , Miocitos Cardíacos/patología , Óxidos/toxicidad , Panobinostat
20.
J Med Chem ; 60(14): 6137-6151, 2017 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-28671847

RESUMEN

Pyrrolo[3,2-d]pyrimidines were identified as a new series of potent and selective TLR7 agonists. Compounds were optimized for their activity and selectivity over TLR8. This presents an advantage over recently described scaffolds that have residual TLR8 activity, which may be detrimental to the tolerability of the candidate drug. Oral administration of the lead compound 54 effectively induced a transient interferon stimulated gene (ISG) response in mice and cynomolgus monkeys. We aimed for a high first pass effect, limiting cytokine induction systemically, and demonstrated the potential for the immunotherapy of viral hepatitis.


Asunto(s)
Antivirales/síntesis química , Hepatitis B/tratamiento farmacológico , Pirimidinas/síntesis química , Pirroles/síntesis química , Receptor Toll-Like 7/agonistas , Administración Oral , Animales , Antivirales/farmacocinética , Antivirales/farmacología , Células Dendríticas/efectos de los fármacos , Células Dendríticas/metabolismo , Perros , Femenino , Genes Reporteros , Células HEK293 , Hepatitis B/inmunología , Humanos , Inmunoterapia , Interferones/biosíntesis , Macaca fascicularis , Células de Riñón Canino Madin Darby , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Pirimidinas/farmacocinética , Pirimidinas/farmacología , Pirroles/farmacocinética , Pirroles/farmacología , Ratas , Relación Estructura-Actividad , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda