Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 18(15): 16102-11, 2010 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-20720995

RESUMEN

We describe the use of fiber Brillouin amplification (FBA) for the coherent transmission of optical frequencies over a 480 km long optical fiber link. FBA uses the transmission fiber itself for efficient, bi-directional coherent amplification of weak signals with pump powers around 30 mW. In a test setup we measured the gain and the achievable signal-to-noise ratio (SNR) of FBA and compared it to that of the widely used uni-directional Erbium doped fiber amplifiers (EDFA) and to our recently built bi-directional EDFA. We measured also the phase noise introduced by the FBA and used a new and simple technique to stabilize the frequency of the FBA pump laser. We then transferred a stabilized laser frequency over a wide area network with a total fiber length of 480 km using only one intermediate FBA station. After compensating the noise induced by the fiber, the frequency is delivered to the user end with an uncertainty below 2 x 10(-18) and an instability sigma y(tau) = 2 x 10(-14) /(tau/s).

2.
Opt Express ; 18(20): 21477-83, 2010 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-20941043

RESUMEN

We demonstrate a fully optical, long-distance remote comparison of independent ultrastable optical frequencies reaching a short term stability that is superior to any reported remote comparison of optical frequencies. We use two ultrastable lasers, which are separated by a geographical distance of more than 50 km, and compare them via a 73 km long phase-stabilized fiber in a commercial telecommunication network. The remote characterization spans more than one optical octave and reaches a fractional frequency instability between the independent ultrastable laser systems of 3 x 10 (-15) in 0.1 s. The achieved performance at 100 ms represents an improvement by one order of magnitude to any previously reported remote comparison of optical frequencies and enables future remote dissemination of the stability of 100 mHz linewidth lasers within seconds.

3.
Science ; 336(6080): 441-4, 2012 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-22539714

RESUMEN

Optical clocks show unprecedented accuracy, surpassing that of previously available clock systems by more than one order of magnitude. Precise intercomparisons will enable a variety of experiments, including tests of fundamental quantum physics and cosmology and applications in geodesy and navigation. Well-established, satellite-based techniques for microwave dissemination are not adequate to compare optical clocks. Here, we present phase-stabilized distribution of an optical frequency over 920 kilometers of telecommunication fiber. We used two antiparallel fiber links to determine their fractional frequency instability (modified Allan deviation) to 5 × 10(-15) in a 1-second integration time, reaching 10(-18) in less than 1000 seconds. For long integration times τ, the deviation from the expected frequency value has been constrained to within 4 × 10(-19). The link may serve as part of a Europe-wide optical frequency dissemination network.

4.
Opt Lett ; 34(15): 2270-2, 2009 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-19649067

RESUMEN

We demonstrate the long-distance transmission of an ultrastable optical frequency derived directly from a state-of-the-art optical frequency standard. Using an active stabilization system we deliver the frequency via a 146-km-long underground fiber link with a fractional instability of 3 x 10(-15) at 1 s, which is close to the theoretical limit for our transfer experiment. After 30,000 s, the relative uncertainty for the transfer is at the level of 1 x 10(-19). Tests with a very short fiber show that noise in our stabilization system contributes fluctuations that are 2 orders of magnitude lower, namely, 3 x 10(-17) at 1 s, reaching 10(-20) after 4,000 s.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda