Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 231
Filtrar
1.
J Immunol ; 212(8): 1334-1344, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38391367

RESUMEN

Various subspecies of the unicellular parasite Trypanosoma brucei cause sleeping sickness, a neglected tropical disease affecting millions of individuals and domestic animals. Immune evasion mechanisms play a pivotal role in parasite survival within the host and enable the parasite to establish a chronic infection. In particular, the rapid switching of variant surface glycoproteins covering a large proportion of the parasite's surface enables the parasite to avoid clearance by the adaptive immune system of the host. In this article, we present the crystal structure and discover an immune-evasive function of the extracellular region of the T. brucei invariant surface gp75 (ISG75). Structural analysis determined that the ISG75 ectodomain is organized as a globular head domain and a long slender coiled-coil domain. Subsequent ligand screening and binding analysis determined that the head domain of ISG75 confers interaction with the Fc region of all subclasses of human IgG. Importantly, the ISG75-IgG interaction strongly inhibits both activation of the classical complement pathway and Ab-dependent cellular phagocytosis by competing with C1q and host cell FcγR CD32. Our data reveal a novel immune evasion mechanism of T. brucei, with ISG75 able to inactivate the activities of Abs recognizing the parasite surface proteins.


Asunto(s)
Trypanosoma brucei brucei , Animales , Humanos , Receptores Fc/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas Portadoras/metabolismo , Inmunoglobulina G/metabolismo , Fagocitosis , Activación de Complemento
2.
J Immunol ; 211(5): 862-873, 2023 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-37466368

RESUMEN

Trypanosomes are known to activate the complement system on their surface, but they control the cascade in a manner such that the cascade does not progress into the terminal pathway. It was recently reported that the invariant surface glycoprotein ISG65 from Trypanosoma brucei interacts reversibly with complement C3 and its degradation products, but the molecular mechanism by which ISG65 interferes with complement activation remains unknown. In this study, we show that ISG65 does not interfere directly with the assembly or activity of the two C3 convertases. However, ISG65 acts as a potent inhibitor of C3 deposition through the alternative pathway in human and murine serum. Degradation assays demonstrate that ISG65 stimulates the C3b to iC3b converting activity of complement factor I in the presence of the cofactors factor H or complement receptor 1. A structure-based model suggests that ISG65 promotes a C3b conformation susceptible to degradation or directly bridges factor I and C3b without contact with the cofactor. In addition, ISG65 is observed to form a stable ternary complex with the ligand binding domain of complement receptor 3 and iC3b. Our data suggest that ISG65 supports trypanosome complement evasion by accelerating the conversion of C3b to iC3b through a unique mechanism.


Asunto(s)
Trypanosoma brucei brucei , Ratones , Animales , Humanos , Trypanosoma brucei brucei/metabolismo , Complemento C3b/metabolismo , Receptores de Complemento 3b , Activación de Complemento , Factor H de Complemento/metabolismo , Fibrinógeno , Vía Alternativa del Complemento , Convertasas de Complemento C3-C5/metabolismo
3.
J Immunol ; 211(3): 403-413, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37350633

RESUMEN

Activation of the complement system represents an important effector mechanism of endogenous and therapeutic Abs. However, efficient complement activation is restricted to a subset of Abs due to the requirement of multivalent interactions between the Ab Fc regions and the C1 complex. In the present study, we demonstrate that Fc-independent recruitment of C1 by modular bispecific single-domain Abs that simultaneously bind C1q and a surface Ag can potently activate the complement system. Using Ags from hematological and solid tumors, we show that these bispecific Abs are cytotoxic to human tumor cell lines that express the Ag and that the modular design allows a functional exchange of the targeting moiety. Direct comparison with clinically approved Abs demonstrates a superior ability of the bispecific Abs to induce complement-dependent cytotoxicity. The efficacy of the bispecific Abs to activate complement strongly depends on the epitope of the C1q binding Ab, demonstrating that the spatial orientation of the C1 complex upon Ag engagement is a critical factor for efficient complement activation. Collectively, our data provide insight into the mechanism of complement activation and provide a new platform for the development of immunotherapies.


Asunto(s)
Antineoplásicos , Complemento C1q , Humanos , Complemento C1q/metabolismo , Proteínas del Sistema Complemento , Activación de Complemento , Línea Celular Tumoral
4.
Artículo en Inglés | MEDLINE | ID: mdl-38657796

RESUMEN

BACKGROUND: Hereditary angioedema (HAE) is a genetic disorder that manifests as recurrent angioedema attacks, most frequently due to absent or reduced C1 inhibitor (C1INH) activity. C1INH is a crucial regulator of enzymatic cascades in the complement, fibrinolytic, and contact systems. Inter-α-trypsin inhibitor heavy chain 4 (ITIH4) is an abundant plasma protease inhibitor that can inhibit enzymes in the proteolytic pathways associated with HAE. Nothing is known about its role in HAE. OBJECTIVE: We investigated ITIH4 activation in HAE, establishing it as a potential biomarker, and explored its involvement in HAE-associated proteolytic pathways. METHODS: Specific immunoassays for noncleaved ITIH4 (intact ITIH4) and an assay detecting both intact and cleaved ITIH4 (total ITIH4) were developed. We initially tested serum samples from HAE patients (n = 20), angiotensin-converting enzyme inhibitor-induced edema patients (ACEI) (n = 20), and patients with HAE of unknown cause (HAE-UNK) (n = 20). Validation involved an extended cohort of 80 HAE patients (60 with HAE-C1INH type 1, 20 with HAE-C1INH type 2), including samples taken during attack and quiescent disease periods, as well as samples from 100 healthy controls. RESULTS: In 63% of HAE patients, intact ITIH4 assay showed lower signals than total ITIH4 assay. This difference was not observed in ACEI and HAE-UNK patients. Western blot analysis confirmed cleaved ITIH4 with low intact ITIH4 samples. In serum samples lacking intact endogenous ITIH4, we observed immediate cleavage of added recombinant ITIH4, suggesting continuous enzymatic activity in the serum. Confirmatory HAE cohort analysis revealed significantly lower intact ITIH4 levels in both type 1 and type 2 HAE patients compared to controls, with consistently low intact/total ITIH4 ratios during clinical HAE attacks. CONCLUSION: The disease-specific low intact ITIH4 levels highlight its unique nature in HAE. ITIH4 may exhibit compensatory mechanisms in HAE, suggesting its utility as a diagnostic and prognostic biomarker. The variations during quiescent and active disease periods raise intriguing questions about the dynamics of proteolytic pathways in HAE.

5.
Proc Natl Acad Sci U S A ; 118(30)2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34301873

RESUMEN

Nanotechnology enables investigations of single biomacromolecules, but technical challenges have limited the application in liquid biopsies, for example, blood plasma. Nonetheless, tools to characterize single molecular species in such samples represent a significant unmet need with the increasing appreciation of the physiological importance of protein structural changes at nanometer scale. Mannose-binding lectin (MBL) is an oligomeric plasma protein and part of the innate immune system through its ability to activate complement. MBL also serves a role as a scavenger for cellular debris, especially DNA. This may link functions of MBL with several inflammatory diseases in which cell-free DNA now appears to play a role, but mechanistic insight has been lacking. By making nanoparticle tracking analysis possible in human plasma, we now show that superoligomeric structures of MBL form nanoparticles with DNA. These oligomers correlate with disease activity in systemic lupus erythematosus patients. With the direct quantification of the hydrodynamic radius, calculations following the principles of Taylor dispersion in the blood stream connect the size of these complexes to endothelial inflammation, which is among the most important morbidities in lupus. Mechanistic insight from an animal model of lupus supported that DNA-stabilized superoligomers stimulate the formation of germinal center B cells and drive loss of immunological tolerance. The formation involves an inverse relationship between the concentration of MBL superoligomers and antibodies to double-stranded DNA. Our approach implicates the structure of DNA-protein nanoparticulates in the pathobiology of autoimmune diseases.


Asunto(s)
ADN/química , Lupus Eritematoso Sistémico/diagnóstico , Nanopartículas/química , Proteínas/química , Adolescente , Adulto , Animales , Linfocitos B , Biomarcadores , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Inflamación/metabolismo , Inflamación/patología , Lectina de Unión a Manosa , Ratones , Ratones Endogámicos C57BL , Unión Proteica , Adulto Joven
6.
J Allergy Clin Immunol ; 152(5): 1218-1236.e9, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37301409

RESUMEN

BACKGROUND: Patients with hereditary angioedema experience recurrent, sometimes life-threatening, attacks of edema. It is a rare genetic disorder characterized by genetic and clinical heterogenicity. Most cases are caused by genetic variants in the SERPING1 gene leading to plasma deficiency of the encoded protein C1 inhibitor (C1INH). More than 500 different hereditary angioedema-causing variants have been identified in the SERPING1 gene, but the disease mechanisms by which they result in pathologically low C1INH plasma levels remain largely unknown. OBJECTIVES: The aim was to describe trans-inhibitory effects of full-length or near full-length C1INH encoded by 28 disease-associated SERPING1 variants. METHODS: HeLa cells were transfected with expression constructs encoding the studied SERPING1 variants. Extensive and comparative studies of C1INH expression, secretion, functionality, and intracellular localization were carried out. RESULTS: Our findings characterized functional properties of a subset of SERPING1 variants allowing the examined variants to be subdivided into 5 different clusters, each containing variants sharing specific molecular characteristics. For all variants except 2, we found that coexpression of mutant and normal C1INH negatively affected the overall capacity to target proteases. Strikingly, for a subset of variants, intracellular formation of C1INH foci was detectable only in heterozygous configurations enabling simultaneous expression of normal and mutant C1INH. CONCLUSIONS: We provide a functional classification of SERPING1 gene variants suggesting that different SERPING1 variants drive the pathogenicity through different and in some cases overlapping molecular disease mechanisms. For a subset of gene variants, our data define some types of hereditary angioedema with C1INH deficiency as serpinopathies driven by dominant-negative disease mechanisms.


Asunto(s)
Angioedemas Hereditarios , Proteína Inhibidora del Complemento C1 , Humanos , Proteína Inhibidora del Complemento C1/genética , Proteína Inhibidora del Complemento C1/metabolismo , Angioedemas Hereditarios/genética , Células HeLa , Endopeptidasas , Péptido Hidrolasas
7.
Eur J Immunol ; 52(10): 1610-1619, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35987516

RESUMEN

Atypical hemolytic uremic syndrome (aHUS) is a thrombotic microangiopathy that may lead to organ failure. Dysregulation of the complement system can cause aHUS, and various disease-related variants in the complement regulatory protein CD46 are described. We here report a pediatric patient with aHUS carrying a hitherto unreported homozygous variant in CD46 (NM_172359.3:c.602C>T p.(Ser201Leu)). In our functional analyses, this variant caused complement dysregulation through three separate mechanisms. First, CD46 surface expression on the patient's blood cells was significantly reduced. Second, stably expressing CD46(Ser201Leu) cells bound markedly less to patterns of C3b than CD46 WT cells. Third, the patient predominantly expressed the rare isoforms of CD46 (C dominated) instead of the more common isoforms (BC dominated). Using BC1 and C1 expressing cell lines, we found that the C1 isoform bound markedly less C3b than the BC1 isoform. These results highlight the coexistence of multiple mechanisms that may act synergistically to disrupt CD46 function during aHUS development.


Asunto(s)
Síndrome Hemolítico Urémico Atípico , Síndrome Hemolítico Urémico Atípico/genética , Niño , Complemento C3b , Proteínas del Sistema Complemento , Humanos , Proteína Cofactora de Membrana/genética , Mutación , Isoformas de Proteínas/genética
8.
Clin Exp Immunol ; 214(1): 18-25, 2023 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-37407023

RESUMEN

Complement activation is a hallmark of systemic lupus erythematosus (SLE) and can proceed through the classical (CP), lectin (LP), or alternative pathway (AP). When managing SLE patients, pathway-specific complement activation is rarely monitored as clinical assays are unavailable. In this study, we aim to differentiate between CP- or LP-mediated complement activation in SLE patients by quantifying pathway-specific protein complexes, namely C1s/C1-inhibitor (C1-INH) (CP-specific activation) and MASP-1/C1-INH (LP-specific activation). Levels for both complexes were assessed in 156 SLE patients and 50 controls using two newly developed ELISAs. We investigated whether pathway-specific complement activation was associated with disease activity and lupus nephritis (LN). Disease activity stratification was performed using SLEDAI scores assessed at inclusion. C1s/C1-INH concentrations were significantly increased in active SLE patients (SLEDAI ≥6) when compared with SLE patients with low disease activity (SLEDAI <6, P < 0.01) and correlated with SLEDAI score (r = .29, P < 0.01). In active LN, MASP-1/C1-INH plasma concentrations were significantly increased compared with nonactive LN (P = 0.02). No differences in MASP-1/C1-INH plasma concentrations were observed between active SLE patients and patients with low disease activity (P = 0.11) nor did we observe a significant correlation with disease activity (r = 0.12, P = 0.15). Our data suggest that the CP and the LP are activated in SLE. The CP is activated in active SLE disease, whereas activation of the LP might be more specific to disease manifestations like LN. Our results warrant further research into specific complement pathway activation in SLE patients to potentially improve specific-targeted and tailored-treatment approaches.


Asunto(s)
Lupus Eritematoso Sistémico , Nefritis Lúpica , Humanos , Vía Clásica del Complemento , Lectinas , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo , Activación de Complemento , Nefritis Lúpica/diagnóstico
9.
Clin Immunol ; 241: 109070, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35779828

RESUMEN

Functional antibody deficiency is clinically assessed from antibody responses to vaccination. However, diagnostic vaccination is complex and may fail in practice. We hypothesized that the levels of naturally occurring antibodies against galactose-α-1,3-galactose (αGal) may represent alternative markers of functional antibody capacity. We included data from 229 patients with suspected primary immunodeficiency in a retrospective study. Antibody levels against αGal and twelve pneumococcal serotypes were determined with solid-phase immunoassays. Pneumococcal vaccinations and treatment with normal human immunoglobulin were assessed from medical records. Anti-αGal antibody levels correlated positively with anti-pneumococcal antibody levels measured before and after pneumococcal vaccination. Contrary to the anti-pneumococcal antibody levels, the anti-αGal antibody level showed potential for predicting subsequent immunoglobulin treatment - a marker of disease severity. Naturally occurring antibodies may reflect the functional capacity tested by diagnostic vaccination but add more useful clinical data. The clinical utility of this easy test should be evaluated in prospective studies.


Asunto(s)
Anticuerpos Antibacterianos , Enfermedades de Inmunodeficiencia Primaria , Galactosa , Humanos , Inmunoglobulina G , Vacunas Neumococicas , Estudios Prospectivos , Estudios Retrospectivos , Vacunación
10.
Scand J Immunol ; 96(3): e13196, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35673952

RESUMEN

Patients with common variable immunodeficiency (CVID) display low antibody levels and associated symptoms, including an increased risk of infections. The causes of CVID are uncertain and likely heterogeneous. The complement system protects against pathogens and plays essential roles in homeostasis and development. The influence of the complement system in CVID is not established. We investigated CVID patients and healthy individuals for plasma levels of the complement proteins: MASP-1, MASP-2, MASP-3, MAp19 and MAp44. We also tested other patients with symptoms similar to the CVID patients. CVID patients had lower average MASP-2 and MAp44 levels than healthy individuals (P < 0.01); the MASP-2 level was 0.73-fold lower, and the MAp44 level was 0.87-fold lower. This was not observed in the other patient cohorts studied. Our findings in this exploratory study provide new insights into CVID and introduce a complement perspective for future investigations into the underlying mechanisms of the disease.


Asunto(s)
Inmunodeficiencia Variable Común , Inmunidad Innata , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa , Proteínas del Sistema Complemento , Humanos , Sistema Inmunológico/metabolismo , Serina Proteasas Asociadas a la Proteína de Unión a la Manosa/metabolismo
11.
J Immunol ; 205(6): 1678-1694, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32769120

RESUMEN

The classical and lectin pathways of the complement system are important for the elimination of pathogens and apoptotic cells and stimulation of the adaptive immune system. Upon activation of these pathways, complement component C4 is proteolytically cleaved, and the major product C4b is deposited on the activator, enabling assembly of a C3 convertase and downstream alternative pathway amplification. Although excessive activation of the lectin and classical pathways contributes to multiple autoimmune and inflammatory diseases and overexpression of a C4 isoform has recently been linked to schizophrenia, a C4 inhibitor and structural characterization of the convertase formed by C4b is lacking. In this study, we present the nanobody hC4Nb8 that binds with picomolar affinity to human C4b and potently inhibits in vitro complement C3 deposition through the classical and lectin pathways in human serum and in mouse serum. The crystal structure of the C4b:hC4Nb8 complex and a three-dimensional reconstruction of the C4bC2 proconvertase obtained by electron microscopy together rationalize how hC4Nb8 prevents proconvertase assembly through recognition of a neoepitope exposed in C4b and reveals a unique C2 conformation compared with the alternative pathway proconvertase. On human induced pluripotent stem cell-derived neurons, the nanobody prevents C3 deposition through the classical pathway. Furthermore, hC4Nb8 inhibits the classical pathway-mediated immune complex delivery to follicular dendritic cells in vivo. The hC4Nb8 represents a novel ultrahigh-affinity inhibitor of the classical and lectin pathways of the complement cascade under both in vitro and in vivo conditions.


Asunto(s)
Convertasas de Complemento C3-C5 de la Vía Clásica/metabolismo , Complemento C3/metabolismo , Complemento C4b/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Neuronas/fisiología , Esquizofrenia/metabolismo , Anticuerpos de Dominio Único/metabolismo , Animales , Afinidad de Anticuerpos , Complejo Antígeno-Anticuerpo/metabolismo , Diferenciación Celular , Células Cultivadas , Activación de Complemento , Complemento C4b/genética , Complemento C4b/inmunología , Humanos , Ratones , Ratones Noqueados , Multimerización de Proteína , Regulación hacia Arriba
12.
J Immunol ; 205(8): 2287-2300, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32938727

RESUMEN

The complement system is an intricate cascade of the innate immune system and plays a key role in microbial defense, inflammation, organ development, and tissue regeneration. There is increasing interest in developing complement regulatory and inhibitory agents to treat complement dysfunction. In this study, we describe the nanobody hC3Nb3, which is specific for the C-terminal C345c domain of human and mouse complement component C3/C3b/C3c and potently inhibits C3 cleavage by the alternative pathway. A high-resolution structure of the hC3Nb3-C345c complex explains how the nanobody blocks proconvertase assembly. Surprisingly, although the nanobody does not affect classical pathway-mediated C3 cleavage, hC3Nb3 inhibits classical pathway-driven hemolysis, suggesting that the C-terminal domain of C3b has an important function in classical pathway C5 convertase activity. The hC3Nb3 nanobody binds C3 with low nanomolar affinity in an SDS-resistant complex, and the nanobody is demonstrated to be a powerful reagent for C3 detection in immunohistochemistry and flow cytometry. Overall, the hC3Nb3 nanobody represents a potent inhibitor of both the alternative pathway and the terminal pathway, with possible applications in complement research, diagnostics, and therapeutics.


Asunto(s)
Complemento C3b/inmunología , C5 Convertasa de la Vía Alternativa del Complemento/inmunología , Vía Alternativa del Complemento/inmunología , Anticuerpos de Dominio Único/inmunología , Animales , Células HEK293 , Humanos , Ratones , Dominios Proteicos
13.
J Biol Chem ; 295(26): 8746-8758, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32376685

RESUMEN

The complement system is a tightly controlled proteolytic cascade in the innate immune system, which tags intruding pathogens and dying host cells for clearance. An essential protein in this process is complement component C3. Uncontrolled complement activation has been implicated in several human diseases and disorders and has spurred the development of therapeutic approaches that modulate the complement system. Here, using purified proteins and several biochemical assays and surface plasmon resonance, we report that our nanobody, hC3Nb2, inhibits C3 deposition by all complement pathways. We observe that the hC3Nb2 nanobody binds human native C3 and its degradation products with low nanomolar affinity and does not interfere with the endogenous regulation of C3b deposition mediated by Factors H and I. Using negative stain EM analysis and functional assays, we demonstrate that hC3Nb2 inhibits the substrate-convertase interaction by binding to the MG3 and MG4 domains of C3 and C3b. Furthermore, we notice that hC3Nb2 is cross-reactive and inhibits the lectin and alternative pathway in murine serum. We conclude that hC3Nb2 is a potent, general, and versatile inhibitor of the human and murine complement cascades. Its cross-reactivity suggests that this nanobody may be valuable for analysis of complement activation within animal models of both acute and chronic diseases.


Asunto(s)
Activación de Complemento/efectos de los fármacos , Complemento C3/antagonistas & inhibidores , Anticuerpos de Dominio Único/farmacología , Animales , Complemento C3/inmunología , Convertasas de Complemento C3-C5/antagonistas & inhibidores , Convertasas de Complemento C3-C5/inmunología , Hemólisis/efectos de los fármacos , Humanos , Ratones , Modelos Moleculares , Ovinos
14.
Immunology ; 162(4): 434-451, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33340093

RESUMEN

Naturally occurring antibodies are abundant in human plasma, but their importance in the defence against bacterial pathogens is unclear. We studied the role of the most abundant of such antibodies, the antibody against terminal galactose-α-1,3-galactose (anti-αGal), in the protection against pneumococcal infections (Streptococcus pneumonia). All known pneumococcal capsular polysaccharides lack terminal galactose-α-1,3-galactose, yet highly purified human anti-αGal antibody of the IgG class reacted with 48 of 91 pneumococcal serotypes. Anti-αGal was found to contain multiple antibody subsets that possess distinct specificities beyond their general reactivity with terminal galactose-α-1,3-galactose. These subsets in concert targeted a wide range of microbial polysaccharides. We found that anti-αGal constituted up to 40% of the total antibody reactivity to pneumococci in normal human plasma, that anti-αGal drives phagocytosis of pneumococci by human neutrophils and that the anti-αGal level was twofold lower in patients prone to pneumococcal infections compared with controls. Moreover, during a 48-year period in Denmark, the 48 anti-αGal-reactive serotypes caused fewer invasive pneumococcal infections (n = 10 927) than the 43 non-reactive serotypes (n = 18 107), supporting protection on the population level. Our findings explain the broad-spectrum pathogen reactivity of anti-αGal and support that these naturally occurring polyreactive antibodies contribute significantly to human protective immunity.


Asunto(s)
Anticuerpos ampliamente neutralizantes/metabolismo , Epítopos/inmunología , Galactosa/inmunología , Inmunoglobulina G/metabolismo , Neutrófilos/inmunología , Infecciones Neumocócicas/inmunología , Streptococcus pneumoniae/fisiología , Adulto , Dinamarca/epidemiología , Susceptibilidad a Enfermedades , Femenino , Humanos , Inmunidad Humoral , Masculino , Fagocitosis , Infecciones Neumocócicas/epidemiología , Polisacáridos Bacterianos/inmunología
15.
EMBO J ; 36(8): 1084-1099, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28264884

RESUMEN

Properdin (FP) is an essential positive regulator of the complement alternative pathway (AP) providing stabilization of the C3 and C5 convertases, but its oligomeric nature challenges structural analysis. We describe here a novel FP deficiency (E244K) caused by a single point mutation which results in a very low level of AP activity. Recombinant FP E244K is monomeric, fails to support bacteriolysis, and binds weakly to C3 products. We compare this to a monomeric unit excised from oligomeric FP, which is also dysfunctional in bacteriolysis but binds the AP proconvertase, C3 convertase, C3 products and partially stabilizes the convertase. The crystal structure of such a FP-convertase complex suggests that the major contact between FP and the AP convertase is mediated by a single FP thrombospondin repeat and a small region in C3b. Small angle X-ray scattering indicates that FP E244K is trapped in a compact conformation preventing its oligomerization. Our studies demonstrate an essential role of FP oligomerization in vivo while our monomers enable detailed structural insight paving the way for novel modulators of complement.


Asunto(s)
Convertasas de Complemento C3-C5/química , Vía Alternativa del Complemento , Properdina/química , Multimerización de Proteína , Sustitución de Aminoácidos , Convertasas de Complemento C3-C5/genética , Convertasas de Complemento C3-C5/metabolismo , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Mutación Missense , Properdina/deficiencia , Properdina/genética , Properdina/metabolismo , Dominios Proteicos
16.
J Neuroinflammation ; 18(1): 177, 2021 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-34399786

RESUMEN

BACKGROUND: Synucleinopathies are characterized by neurodegeneration and deposition of the presynaptic protein α-synuclein in pathological protein inclusions. Growing evidence suggests the complement system not only has physiological functions in the central nervous system, but also is involved in mediating the pathological loss of synapses in Alzheimer's disease. However, it is not established whether the complement system has a similar role in the diseases Parkinson's disease, Dementia with Lewy bodies, and multiple system atrophy (MSA) that are associated with α-synuclein aggregate pathology. METHODS: To investigate if the complement system has a pathological role in synucleinopathies, we assessed the effect of the complement system on the viability of an α-synuclein expressing cell model and examined direct activation of the complement system by α-synuclein in a plate-based activation assay. Finally, we investigated the levels of the initiator of the classical pathway, C1q, in postmortem brain samples from MSA patients. RESULTS: We demonstrate that α-synuclein activates the classical complement pathway and mediates complement-dependent toxicity in α-synuclein expressing SH-SY5Y cells. The α-synuclein-dependent cellular toxicity was rescued by the complement inhibitors RaCI (inhibiting C5) and Cp20 (inhibiting C3). Furthermore, we observed a trend for higher levels of C1q in the putamen of MSA subjects than that of controls. CONCLUSION: α-Synuclein can activate the classical complement pathway, and the complement system is involved in α-synuclein-dependent cellular cytotoxicity suggesting the system could play a prodegenerative role in synucleinopathies.


Asunto(s)
Vía Clásica del Complemento/fisiología , Cuerpos de Inclusión/metabolismo , Corteza Visual/metabolismo , alfa-Sinucleína/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Línea Celular Tumoral , Femenino , Humanos , Cuerpos de Inclusión/patología , Masculino , Persona de Mediana Edad , Corteza Visual/patología
17.
Cell Tissue Res ; 385(2): 489-500, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33864499

RESUMEN

Proteases play a central role in regulating renal pathophysiology and are increasingly evaluated as actionable drug targets. Here, we review the role of proteolytic systems in inflammatory kidney disease. Inflammatory kidney diseases are associated with broad dysregulations of extracellular and intracellular proteolysis. As an example of a proteolytic system, the complement system plays a significant role in glomerular inflammatory kidney disease and is currently under clinical investigation. Based on two glomerular kidney diseases, lupus nephritis, and membranous nephropathy, we portrait two proteolytic pathomechanisms and the role of the complement system. We discuss how profiling proteolytic activity in patient samples could be used to stratify patients for more targeted interventions in inflammatory kidney diseases. We also describe novel comprehensive, quantitative tools to investigate the entirety of proteolytic processes in a tissue sample. Emphasis is placed on mass spectrometric approaches that enable the comprehensive analysis of the complement system, as well as protease activities and regulation in general.


Asunto(s)
Inflamación/patología , Glomérulos Renales/patología , Animales , Humanos , Proteolisis
18.
Scand J Immunol ; 93(5): e13008, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33314191

RESUMEN

In clinical practice, the capacity for producing anti-carbohydrate antibodies is regarded as an entity, but supportive evidence is lacking. We hypothesized that the outcome of the gold standard test for clinical assessment of this capacity, antibody response to polysaccharide vaccination, correlated with the level of the abundant naturally occurring anti-carbohydrate antibody, anti-αGal. To perform an exploratory study, 47 HIV-infected adults were recruited from a vaccine trial. Participants received a 23-valent pneumococcal capsular polysaccharide vaccine. Plasma samples obtained just before and median 4 weeks after the vaccination were quantified for IgG anti-αGal antibody and IgG antibodies to polysaccharides present in the vaccine (serotypes 1, 7F and 19A) by solid-phase type immunoassays. The vaccination responses were assessed as a categorical variable (based on criteria defined by The American Academy of Allergy, Asthma & Immunology and the American College of Allergy, Asthma & Immunology) and as three different continuous variables (antibody increment, geometrical average and standard normal deviates of the achieved antibody concentrations). The baseline anti-αGal level predicted the vaccine response as a categorical variable (ROC-curve analysis, AUC = 0.71; 95%CI: 0.55-0.86) and as the three continuous variables (eg slope of linear regression of geometrical average = 0.37; 95%CI: 0.15-0.59). The correlation between the anti-αGal level and antibody responses to polysaccharide vaccination fits with a shared underlying capacity. Thus, the present study supports the notion of a measurable capacity for the production of anti-carbohydrate antibodies in each individual. Firm conclusions on the generalizability and clinical utility require further studies.


Asunto(s)
Anticuerpos Antibacterianos/sangre , Infecciones por VIH/inmunología , Vacunas Neumococicas/inmunología , Polisacáridos Bacterianos/inmunología , alfa-Galactosidasa/inmunología , Anticuerpos Antibacterianos/inmunología , Humanos , Inmunoglobulina G/sangre , Inmunoglobulina G/inmunología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Colaboradores-Inductores/inmunología
19.
Diabetes Metab Res Rev ; 37(3): e3385, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32662092

RESUMEN

BACKGROUND: Adverse activation of the complement cascade in the innate immune system appears to be involved in development of vascular complications in diabetes. Dipeptidyl peptidase-4 (DPP-4) is a cell surface serine protease expressed in a variety of tissues. DPP-4 inhibitors are widely used in treatment of type 2 diabetes and appear to yield beneficial pleiotropic effects beyond their glucose-lowering action, for example, renoprotective and anti-inflammatory properties, but the exact mechanisms remain unknown. We hypothesised that DPP-4 inhibitors block adverse complement activation by inhibiting complement-activating serine proteases. MATERIALS AND METHODS: We analysed the effects of 7 different DPP-4 inhibitors on the lectin and classical pathway of the complement system in vitro by quantifying complement factor C4b deposition onto mannan or IgG coated surfaces, respectively. Furthermore, plasma concentrations of mannan-binding lectin (MBL), soluble membrane attack complex (sMAC), and C4b deposition were quantified in 71 patients with a recent acute coronary syndrome and glucose disturbances, randomly assigned to sitagliptin 100 mg (n = 34) or placebo (n = 37) for 12 weeks. RESULTS: All the 7 DPP-4 inhibitors tested in the study directly inhibited functional activity of the lectin pathway in a dose-dependent manner with varying potency in vitro. In vivo, MBL, sMAC, and C4b declined significantly during follow-up in both groups without significant effect of sitagliptin. CONCLUSIONS: We demonstrated an inhibitory effect of DPP-4 inhibitors on the lectin pathway in vitro. The clinical relevance of this effect of DPP-4 inhibitors remains to be fully elucidated.


Asunto(s)
Activación de Complemento , Diabetes Mellitus Tipo 2 , Inhibidores de la Dipeptidil-Peptidasa IV , Activación de Complemento/efectos de los fármacos , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Humanos , Lectinas/efectos de los fármacos
20.
Immunology ; 161(1): 66-79, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32583419

RESUMEN

Some human antibodies may paradoxically inhibit complement activation on bacteria and enhance pathogen survival in humans. This property was also claimed for IgG antibodies reacting with terminal galactose-α-1,3-galactose (Galα3Gal; IgG anti-αGal), a naturally occurring and abundant antibody in human plasma that targets numerous different pathogens. To reinvestigate these effects, we used IgG anti-αGal affinity isolated from a pool of normal human IgG and human hypogammaglobulinaemia serum as a complement source. Flow cytometry was performed to examine antibody binding and complement deposition on pig erythrocytes, Escherichia coli O86 and Streptococcus pneumoniae serotype 9V. Specific nanobodies were used to block the effect of single complement factors and to delineate the complement pathways involved. IgG anti-αGal was capable of activating the classical complement pathway on all the tested target cells. The degree of activation was exponentially related to the density of bound antibody on E. coli O86 and pig erythrocytes, but more linearly on S. pneumoniae 9V. The alternative pathway of complement amplified complement deposition. Deposited C3 fragments covered the activating IgG anti-αGal, obstructing its detection and highlighting this as a likely general caveat in studies of antibody density and complement deposition. The inherent capacity for complement activation by the purified carbohydrate reactive IgG anti-αGal was similar to that of normal human IgG. We propose that the previously reported complement inhibition by IgG anti-αGal relates to suboptimal assay configurations, in contrast to the complement activating property of the antibodies demonstrated in this paper.


Asunto(s)
Activación de Complemento/inmunología , Disacáridos/inmunología , Escherichia coli/inmunología , Inmunoglobulina G/inmunología , Anticuerpos de Dominio Único/inmunología , Streptococcus pneumoniae/inmunología , Agammaglobulinemia/inmunología , Animales , Reacciones Antígeno-Anticuerpo/inmunología , Proteínas del Sistema Complemento/inmunología , Humanos , Porcinos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda