Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Phys Rev Lett ; 105(18): 187203, 2010 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-21231132

RESUMEN

We use a pump-probe photoemission electron microscopy technique to image the displacement of vortex cores in Permalloy discs due to the spin-torque effect during current pulse injection. Exploiting the distinctly different symmetries of the spin torques and the Oersted-field torque with respect to the vortex spin structure we determine the torques unambiguously, and we quantify the amplitude of the strongly debated nonadiabatic spin torque. The nonadiabaticity parameter is found to be ß=0.15±0.07, which is more than an order of magnitude larger than the damping constant α, pointing to strong nonadiabatic transport across the high magnetization gradient vortex spin structures.

2.
Phys Rev Lett ; 102(25): 257602, 2009 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-19659120

RESUMEN

Doping Ni80Fe20 by heavy rare earth atoms alters the magnetic relaxation properties of this material drastically. We show that this effect can be well explained by the slow relaxing impurity mechanism. This process is a consequence of the anisotropy of the on site exchange interaction between the 4f magnetic moments and the conduction band. As expected from this model the magnitude of the damping effect scales with the anisotropy of the exchange interaction and increases by an order of magnitude at low temperatures. In addition, our measurements allow us to determine the relaxation time of the 4f electrons as a function of temperature.

3.
Phys Rev Lett ; 102(11): 117201, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19392235

RESUMEN

We investigate the effect of Ho, Dy, Tb, and Gd impurities on the femtosecond laser-induced magnetization dynamics of thin Permalloy films using the time-resolved magneto-optical Kerr effect. Varying the amount of Ho, Dy, Tb content from 0% to 8%, we observe a gradual change of the characteristic demagnetization time constant from approximately 60 to approximately 150 fs. In contrast, Gd concentrations up to 15% do not influence the time scale of the initial photoinduced magnetization loss. We propose a demagnetization mechanism that relies on strong magnetic inertia of the rare-earth dopant which stabilizes the ferrimagnetic ordering and thereby delays the demagnetization.

4.
Rev Sci Instrum ; 80(12): 123902, 2009 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20059149

RESUMEN

We describe a setup for the x-ray detection of ferromagnetic resonance in the longitudinal geometry using element-specific transmission measurements. Thin magnetic film samples are placed in a static magnetic field collinear with the propagation direction of a polarized soft x-ray beam and driven to ferromagnetic resonance by a continuous wave microwave magnetic field perpendicular to it. The transmitted photon flux is measured both as a function of the x-ray photon energy and as a function of the applied static magnetic field. We report experiments performed on a 15 nm film of doped Permalloy (Ni(73)Fe(18)Gd(7)Co(2)) at the L(3)/L(2)-edges of Fe, Co, and Ni. The achieved ferromagnetic resonance sensitivity is about 0.1 monolayers/square root(Hz). The obtained results are interpreted in the framework of a conductivity tensor based formalism. The factors limiting the sensitivity as well as different approaches for the x-ray detection of ferromagnetic resonance are discussed.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda