Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 106(34): 14564-9, 2009 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-19667176

RESUMEN

A conserved insulin-like pathway modulates both aging and pathogen resistance in Caenorhabditis elegans. However, the specific innate effector functions that mediate this pathogen resistance are largely unknown. Autophagy, a lysosomal degradation pathway, plays a role in controlling intracellular bacterial pathogen infections in cultured cells, but less is known about its role at the organismal level. We examined the effects of autophagy gene inactivation on Salmonella enterica Serovar Typhimurium (Salmonella typhimurium) infection in 2 model organisms, Caenorhabditis elegans and Dictyostelium discoideum. In both organisms, genetic inactivation of the autophagy pathway increases bacterial intracellular replication, decreases animal lifespan, and results in apoptotic-independent death. In C. elegans, genetic knockdown of autophagy genes abrogates pathogen resistance conferred by a loss-of-function mutation, daf-2(e1370), in the insulin-like tyrosine kinase receptor or by over-expression of the DAF-16 FOXO transcription factor. Thus, autophagy genes play an essential role in host defense in vivo against an intracellular bacterial pathogen and mediate pathogen resistance in long-lived mutant nematodes.


Asunto(s)
Autofagia/fisiología , Proteínas de Caenorhabditis elegans/fisiología , Caenorhabditis elegans/microbiología , Receptor de Insulina/fisiología , Salmonella typhimurium/fisiología , Animales , Animales Modificados Genéticamente , Autofagia/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/ultraestructura , Proteínas de Caenorhabditis elegans/genética , Dictyostelium/genética , Dictyostelium/microbiología , Células Epiteliales/microbiología , Células Epiteliales/ultraestructura , Factores de Transcripción Forkhead , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno , Inmunidad Innata/genética , Mucosa Intestinal/citología , Mucosa Intestinal/microbiología , Mucosa Intestinal/ultraestructura , Longevidad/genética , Microscopía Electrónica de Transmisión , Microscopía Fluorescente , Mutación , Fagosomas/ultraestructura , Interferencia de ARN , Receptor de Insulina/genética , Salmonella typhimurium/genética , Análisis de Supervivencia , Factores de Transcripción/genética , Factores de Transcripción/fisiología , Proteínas de Transporte Vesicular
2.
J Biomed Mater Res B Appl Biomater ; 105(7): 2153-2161, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-27424845

RESUMEN

Current interventional technology for pediatric airway obstruction consists of cardiovascular stents and silicon tubes. These devices are composed of permanent materials that have limitations in biocompatibility and mechanical properties that make them controversial for used in pediatrics. Bioresorbable stents offer a temporary intervention that dissolves in the body over time and can serve as a platform for local drug delivery. Here we investigate a novel approach to use an antibiotic, ciprofloxacin, as a polymerization initiator to synthesize poly(ciprofloxacin fumaric acid) (PCFA) and then a second polymer using gadodiamide as an initiator to synthesize poly(gadodiamide ciprofloxacin fumaric acid) (PGCFA). Polymer structure, degradation, thermal properties, and rheological behavior were analyzed. Ciprofloxacin released was determined and polymer degradation extracts were used in bacterial sensitivity assessments with four common airway pathogens. PCFA and PGCFA polymers and drug release properties were compared to our previously published polymer poly(fumaric acid) (PFA). These novel polymers enable new possibilities as coatings for bioresorbable biomedical applications that require antibiotic resistance and imaging capabilities. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 105B: 2153-2161, 2017.


Asunto(s)
Implantes Absorbibles , Ciprofloxacina , Bacterias Gramnegativas/crecimiento & desarrollo , Stents , Ciprofloxacina/química , Ciprofloxacina/farmacocinética , Ciprofloxacina/farmacología , Materiales Biocompatibles Revestidos , Implantes de Medicamentos/química , Implantes de Medicamentos/farmacocinética , Implantes de Medicamentos/farmacología , Pruebas de Sensibilidad Microbiana
3.
Autophagy ; 10(10): 1702-11, 2014 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-25126732

RESUMEN

In response to starvation, cells undergo increased levels of autophagy and cell cycle arrest but the role of autophagy in starvation-induced cell cycle arrest is not fully understood. Here we show that autophagy genes regulate cell cycle arrest in the budding yeast Saccharomyces cerevisiae during nitrogen starvation. While exponentially growing wild-type yeasts preferentially arrest in G1/G0 in response to starvation, yeasts carrying null mutations in autophagy genes show a significantly higher percentage of cells in G2/M. In these autophagy-deficient yeast strains, starvation elicits physiological properties associated with quiescence, such as Snf1 activation, glycogen and trehalose accumulation as well as heat-shock resistance. However, while nutrient-starved wild-type yeasts finish the G2/M transition and arrest in G1/G 00 autophagy-deficient yeasts arrest in telophase. Our results suggest that autophagy is crucial for mitotic exit during starvation and appropriate entry into a G1/G0 quiescent state.


Asunto(s)
Autofagia/efectos de los fármacos , Fase G1/efectos de los fármacos , Nitrógeno/deficiencia , Nitrógeno/farmacología , Fase de Descanso del Ciclo Celular/efectos de los fármacos , Saccharomyces cerevisiae/citología , Fenotipo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda