Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Environ Sci Technol ; 57(28): 10458-10466, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37387677

RESUMEN

The growth of renewable energy industries and the ongoing need for fertilizer in agriculture have created a need for sustainable production of ammonia (NH3) using low-cost, environment-friendly techniques. The electrocatalytic nitrate (NO3-) reduction reaction (NO3RR) has the potential to improve both the management of environmental nitrogen and the recycling of synthetic nutrients. However, NO3RR is frequently hindered by the incomplete NO3- conversion, sluggish reaction kinetics, and suppression of the hydrogen evolution reaction (HER). Inspired by specific local electronic structures that are adjustable for single-atom catalysts, this work presents a nanohybrid electrocatalytic filter with iron single atoms (FeSA) immobilized on MXene. The fabricated FeSA/MXene filter exhibited maximum NH3 Faradaic efficiency and selectivity (82.9 and 99.2%, respectively) that were higher than those for filters made of Fe nanoparticles anchored on MXene (FeNP/MXene) (69.2 and 81.3%, respectively) and MXene alone (32.8 and 52.4%, respectively), measured at an initial pH of 7 and an applied potential of -1.4 V vs Ag/AgCl. Density functional theory calculations revealed that, compared to the FeNP/MXene filter, the FeSA/MXene filter prevented the competition from the HER and reduced the activation energy of the potential-limiting step (*NO to *NHO) that made the NH3 synthesis thermodynamically favorable . This work highlights an alternative strategy for achieving a synergistic NO3- removal and nutrient recovery with durable catalytic activity and stability.


Asunto(s)
Amoníaco , Nitratos , Electrodos , Hidrógeno , Hierro
2.
Environ Res ; 236(Pt 2): 116867, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37573819

RESUMEN

Phosphorus scarcity and the deleterious ecological impact of the release of organophosphorus pesticides have emerged as critical global issues. Previous research has shown the ability of electrochemistry to induce the precipitation of calcium phosphate from phosphorus-laden wastewater to recover the phosphorus. The current study presents a flow-through electrochemical system consisting of a column-shaped electrochemical reactor, a tubular stainless-steel (SS) cathode, and a titanium suboxides (TiSO) anode. This system simultaneously oxidizes tetrakis (hydroxymethyl) phosphonium sulfate (THPS) and recycles phosphates. The influence of current density, flow rate, and initial calcium ions concentration were examined under continuous flow operation. To enhance the electrochemical reactor's performance, we elevated the current density from 5 to 30 mA cm-2, which caused the phosphorus recovery efficiency to increase from 37% to 72% within 120 min, accompanied by an enhancement of the THPS mineralization efficiency from 57% to 90%. These improvements were likely due to the higher yield of reactive species chloride species (Cl•) formed at the TiSO anode and the higher local pH at the cathode. By investigating the formation of Cl• at the TiSO anode, we found that THPS mineralization exceeded 75% in the presence of NaCl at a current density of 20 mA cm-2. The demonstrated performance of the flow-through electrochemical system should enable the utilization of anodic oxidation-cathodic precipitation for the recovery of phosphorus from organophosphorus-contaminated wastewater.

3.
Chemosphere ; 335: 139047, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37263511

RESUMEN

Currently, there is a lack of advanced nanotechnology designed to efficiently remove antimony (Sb) from contaminated water systems. Sb most commonly appears as antimonite (Sb(III)) or as the anion antimonate (Sb(V)). Sb(III) is approximately ten times more toxic than Sb(V), and Sb(III) is also harder to eliminate because of its motility and charge neutrality. The work presented here developed an electrochemical filtration technology for the direct elimination of Sb(III) from contaminated water. The primary components of the filtration system were an electroactive carbon nanotube (CNT) membrane that were functionalized with the Sb-specific UiO-66(Zr), an metal-organic framework. In an electric field, the UiO-66(Zr)/CNT nanohybrid filter enabled in situ transformation of Sb(III) to less harmful Sb(V). The Sb(V) was then effectively adsorbed by the UiO-66(Zr). The removal efficiency (90.5%) and rate constant (k1 = 0.0272 min-1) toward Sb(III) removal was 1.3 and 1.4 times greater than that of CNT filter. The abundance of available adsorption sites of the nanohybrid filter, flow-through construction, and electrochemical activity combined to rapidly remove Sb(III) from water. The underlying functioning of the nanohybrid filter was determined with a series of process experiments and structural characterizations. The filter was effective over a broad range of pH values and in a variety of complex aqueous environments. Once loaded with Sb, the UiO-66(Zr)/CNT filter could be washed with a dilute NaOH solution to efficiently refresh its activity. The results of this work offer a direct, efficient strategy that integrates nanotechnology, electrochemistry, and membrane separation to remove antimony and potentially other heavy metals from contaminated water.


Asunto(s)
Estructuras Metalorgánicas , Nanotubos de Carbono , Contaminantes Químicos del Agua , Purificación del Agua , Antimonio/química , Nanotubos de Carbono/química , Descontaminación , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Agua , Adsorción
4.
J Colloid Interface Sci ; 562: 429-443, 2020 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-31791698

RESUMEN

A new ternary composite BiOIO3/MoS2/C500 was prepared via sol-gel and hydrothermal method. The energy bands, surface structures and optical properties of the as-prepared samples were characterized by XRD, SEM, TEM, UV-vis DRS, BET, XPS, PL, ESR and electrochemical measurement. The density functional theory (DFT) was adopted to explore the capability as well. It is discovered that BiOIO3/MoS2/C500 possesses excellent Z-scheme heterostructure for separating photogenerated electron-hole pairs mainly provided by BiOIO3/MoS2, and large specific surface area as charge carriers transfer channel mainly provided by C500, which can accelerate charges to transfer to the surface reaction area for photocatalytic oxidation. Then, the ternary catalyst was utilized to remove gas-phase Hg0 including its oxidation product, and possessed the highest removal efficiency of 78.32%, which is much higher than that of its pure component. Meanwhile, the photocatalytic activity of ternary catalyst are of high stability, and the product after the reaction is HgO and can be adsorbed on BiOIO3/MoS2/C500, which is detected by high resolution XPS. The loading manner provides a new vision for both photocatalysis and adsorption.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda