Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Publication year range
1.
Bioresour Technol ; 406: 131035, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38925409

RESUMEN

Yarrowia lipolytica was successfully engineered to synthesize erythritol from crude glycerol, a cheap by-product of biodiesel production, but the yield remained low. Here, a biosensor-guided adaptive evolution screening platform was constructed to obtain mutant strains which could efficiently utilize crude glycerol to produce erythritol. Erythrose reductase D46A (M1) was identified as a key mutant through whole-genome sequencing of the strain G12, which exhibited higher catalytic activity (1.6-fold of the wild-type). M1 was further modified to obtain a combinatorial mutant with 4.1-fold enhancement of catalytic activity. Finally, the metabolic network was reconfigured to redirect carbon fluxes toward erythritol synthesis. The erythritol titer of the engineered strain G31 reached 220.5 g/L with a productivity of 1.8 g/L/h in a 5-L bioreactor. The study provides valuable guidance for biosensor-based ultra-high-throughput screening strategies in Y. lipolytica, as well as presenting a new paradigm for the sustainable valorization of crude glycerol.


Asunto(s)
Eritritol , Glicerol , Yarrowia , Yarrowia/metabolismo , Yarrowia/genética , Eritritol/metabolismo , Glicerol/metabolismo , Ingeniería Metabólica/métodos , Técnicas Biosensibles/métodos , Mutación , Reactores Biológicos
2.
J Hazard Mater ; 477: 135380, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39088944

RESUMEN

The enzymatic degradation of plastic offers a green, sustainable strategy and scalable circular carbon route for solving polyester waste. Among the earlies discovered plastic-degrading enzymes are PET hydrolase (PETase) and MHET hydrolase (MHETase), which act synergistically. To promote the adsorption of enzymes on PET surfaces, increase their robustness, and enable directly depolymerization, we designed hydrophobin HFBI fused-PETase and MHETase. A customized self-assembled synergistic biocatalyst (MC@CaZn-MOF) was further developed to promote the two-step depolymerization process. The tailored catalysts showed better adhesion to the PET surface and desirable durability, retaining over 70% relative activity after incubation at pH 8.0 and 60 °C for 120 h. Importantly, MC@CaZn-MOF could directly decompose untreated AGf-PET to generate 9.5 mM TPA with weight loss over 90%. The successful implementation of a bifunctional customized catalyst makes the large-scale biocatalytic degradation of PET feasible, contributing to polymer upcycling and environmental sustainability.


Asunto(s)
Biocatálisis , Polimerizacion , Plásticos/química , Hidrolasas/metabolismo , Hidrolasas/química , Biodegradación Ambiental , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Estructuras Metalorgánicas/química
3.
Electron. j. biotechnol ; 40: 71-77, July. 2019. tab, graf, ilus
Artículo en Inglés | LILACS | ID: biblio-1053491

RESUMEN

Background: Burdock (Arctium lappa L.) is a fructan-rich plant with prebiotic potential. The aim of this study was to develop an efficient enzymatic route to prepare fructooligosaccharides (FOS)-rich and highly antioxidative syrup using burdock root as a raw material. Results: Endo-inulinase significantly improved the yield of FOS 2.4-fold while tannase pretreatment further increased the yield of FOS 2.8-fold. Other enzymes, including endo-polygalacturonase, endo-glucanase and endo-xylanase, were able to increase the yield of total soluble sugar by 11.1% (w/w). By this process, a new enzymatic process for burdock syrup was developed and the yield of burdock syrup increased by 25% (w/w), whereas with FOS, total soluble sugars, total soluble protein and total soluble polyphenols were enhanced to 28.8%, 53.3%, 8.9% and 3.3% (w/w), respectively. Additionally, the scavenging abilities of DPPH and hydroxyl radicals, and total antioxidant capacity of the syrup were increased by 23.7%, 51.8% and 35.4%, respectively. Conclusions: Our results could be applied to the development of efficient extraction of valuable products from agricultural materials using enzyme-mediated methods.


Asunto(s)
Oligosacáridos/química , Raíces de Plantas/química , Fructosa/química , Glicósido Hidrolasas/metabolismo , Antioxidantes/química , Oligosacáridos/metabolismo , Poligalacturonasa/metabolismo , Hidrolasas de Éster Carboxílico/metabolismo , Cromatografía Líquida de Alta Presión , Radical Hidroxilo , Arctium , Alimentos Funcionales , Polifenoles , Fructosa/metabolismo , Antioxidantes/metabolismo
4.
Electron. j. biotechnol ; 26: 46-51, Mar. 2017. graf, tab
Artículo en Inglés | LILACS | ID: biblio-1009650

RESUMEN

Background: Current commercial production of isomalto-oligosaccharides (IMOs) commonly involves a lengthy multistage process with low yields. Results: To improve the process efficiency for production of IMOs, we developed a simple and efficient method by using enzyme cocktails composed of the recombinant Bacillus naganoensis pullulanase produced by Bacillus licheniformis, α-amylase from Bacillus amyloliquefaciens, barley bran ß-amylase, and α-transglucosidase from Aspergillus niger to perform simultaneous saccharification and transglycosylation to process the liquefied starch. After 13 h of reacting time, 49.09% IMOs (calculated from the total amount of isomaltose, isomaltotriose, and panose) were produced. Conclusions: Our method of using an enzyme cocktail for the efficient production of IMOs offers an attractive alternative to the process presently in use.


Asunto(s)
Oligosacáridos/metabolismo , Almidón/metabolismo , Enzimas/metabolismo , Isomaltosa/metabolismo , Oligosacáridos/biosíntesis , Aspergillus niger/enzimología , Temperatura , Bacillus/enzimología , beta-Amilasa/metabolismo , Glicosilación , Licuefacción , alfa-Amilasas/metabolismo , Fermentación , Glucosidasas/metabolismo , Glicósido Hidrolasas/metabolismo , Concentración de Iones de Hidrógeno
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda