RESUMEN
Projected changes in precipitation regimes can greatly impact soil biota, which in turn alters key ecosystem functions. In moss-dominated ecosystems, the bryosphere (i.e., the ground moss layer including live and senesced moss) plays a key role in carbon and nutrient cycling, and it hosts high abundances of microfauna (i.e., nematodes and tardigrades) and mesofauna (i.e., mites and springtails). However, we know very little about how bryosphere fauna responds to precipitation, and whether this response changes across environmental gradients. Here, we used a mesocosm experiment to study the effect of volume and frequency of precipitation on the abundance and community composition of functional groups of bryosphere fauna. Hylocomium splendens bryospheres were sampled from a long-term post-fire boreal forest chronosequence in northern Sweden which varies greatly in environmental conditions. We found that reduced precipitation promoted the abundance of total microfauna and of total mesofauna, but impaired predaceous/omnivorous nematodes, and springtails. Generally, bryosphere fauna responded more strongly to precipitation volume than to precipitation frequency. For some faunal functional groups, the effects of precipitation frequency were stronger at reduced precipitation volumes. Context-dependency effects were found for microfauna only: microfauna was more sensitive to precipitation in late-successional forests (i.e., those with lower productivity and soil nutrient availability) than in earlier-successional forests. Our results also suggest that drought-induced changes in trophic interactions and food resources in the bryosphere may increase faunal abundance. Consequently, drier bryospheres that may result from climate change could promote carbon and nutrient turnover from fauna activity, especially in older, less productive forests.
Asunto(s)
Nematodos , Taiga , Animales , Carbono , Sequías , Ecosistema , Bosques , SueloRESUMEN
Biochar has been used increasingly as a soil additive to control mercury (Hg) pollution in paddy rice fields. As the most active component of soil organic matter, soil dissolved organic matter (DOM) plays a vital role in the environmental fate of contaminants. However, there are very few studies to determine the impact of biochar on the Hg cycle in rice paddies using insights from DOM. This study used original and modified biochar to investigate their effect on DOM dynamics and their potential impact on methylmercury (MeHg) production and bioaccumulation in rice plants. Porewater DOM was collected to analyze the variations in soil-derived DOM in paddy soils. The results showed that the addition of biochar, whether in original or modified form, significantly reduced the bioaccumulation of MeHg in rice plants, especially in hulls and grains (p<0.05). However, MeHg production in soils was only inhibited by the modified biochar. Biochar addition induced a significant increase in DOM's aromaticity and molecular weight (p<0.05), which decreased Hg bioavailability. Furthermore, enhanced microbial activity was also observed in DOM (p<0.05), further increasing MeHg production in the soil. Thus, the effect of biochar on the fate of Hg cycle involves competition between the two different roles of DOM. This study identified a specific mechanism by which biochar affects Hg behavior in rice paddy soil and contributes to understanding the more general influence of biochar in agriculture and contaminant remediation.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Bioacumulación , Carbón Orgánico , Materia Orgánica Disuelta , Mercurio/análisis , Suelo , Contaminantes del Suelo/análisisRESUMEN
Global increases in the intensity and frequency of wildfires are driving major changes in soil organic matter (SOM) characteristics, including soil dissolved organic matter (DOM). As the most crucial component of SOM, soil DOM plays a pivotal role in the carbon cycle and regulates the environmental fate of contaminants through its versatile reactivities, including electron-donating capacity (EDC). However, it is still being determined how wildfire influences key characteristics of soil DOM and subsequent effects on EDC in forest soils. Thus, we conducted our study to fill this gap with the forest soils of Jinyun Mountain Nature Reserve of China, which experienced an unprecedented wildfire event in 2022. The results from optical characterization, high-performance size-exclusion chromatography (HPSEC), and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) showed decreasing molecular weight but elevating nitrogen-containing molecular formulas of soil DOM in the burned soils. This could be attributed to the Maillard reaction and microbial re-colonies. Additionally, wildfires increased the condensed aromatics and lignin components in soil DOM. In the burned soils, we observed increasing EDC of soil DOM, which accounts for an increase in lignin-derived phenolic components. Overall, the findings of this study demonstrate that eco-disturbances, such as wildfires, induce alterations in the properties of DOM, leading to variations in its reactivity and potentially influencing the fate of environmental pollutants beyond carbon dynamics alone. Thus, incorporating the dynamic properties of soil DOM, particularly in the context of climate change, can enhance the assessment of risks associated with contaminants in soil and water, providing valuable insights.
Asunto(s)
Suelo , Incendios Forestales , Suelo/química , China , ElectronesRESUMEN
Dissolved organic matter (DOM) is an essential component of environmental systems. It usually originates from two end-members, including allochthonous and autochthonous sources. Previously, links have been established between DOM origins/sources and its biogeochemical reactivities. However, the influence of changes in DOM characteristics driven by end-member mixing on DOM biogeochemical reactivities has not been clarified. In this study, we investigated variations of DOM reactivities responding to the dynamics of DOM characteristics induced by different mixing ratios of two DOM end-members derived from humic acid (HA) and algae, respectively. Four biogeochemical reactivities of DOM were evaluated, including biodegradation, ·OH production, photodegradation, and redox capacity. Results showed that the variations of DOM characteristics due to the two end-members mixing significantly impact its biogeochemical reactivities. However, not all spectral parameters and reactivities followed the conservative mixing behavior. In contrast to reactivities of ·OH production and redox capacity, mixed samples showed apparent deviations from conservative linear relationships in biodegradation and photodegradation due to the interaction between the two end-members. Regarding the role of DOM properties influencing reactivity changes, peak A and M were recognized as the most stable parameters. However, peak C and SUVA254 were identified as the most vital contributors for explaining DOM reactivity variations. These findings suggest that a general model for describing the dynamic relationship between DOM source and reactivity cannot be proposed. Thus, the dynamics of DOM reactivity in diverse ecosystems cannot be estimated simply by the "plus or minus" of the reactivity from individual end-member. The effect of end-member mixing should be evaluated in a given reactivity instead of generalization. This study provides important insights for further understanding the dynamics of DOM's environmental role in different ecosystems influenced by variations of source inputs. In future, more field investigations are needed to further verify our findings in this study, especially in the scenario of end-member mixing.
Asunto(s)
Materia Orgánica Disuelta , Compuestos Orgánicos , Compuestos Orgánicos/química , Ecosistema , Sustancias Húmicas/análisis , Fotólisis , Espectrometría de FluorescenciaRESUMEN
No-tillage treatment, including no-tillage with straw retention (NTS) and without (NT), has been widely used as an efficient and sustainable alternative to conventional tillage with straw retention (CTS) and without (CT) and greatly affects soil physical quality and organic matter dynamics in cropland ecosystems. Although some studies have reported the effects of NTS on soil aggregate stability and soil organic carbon (SOC) concentration, the underlying mechanisms of how soil aggregates, aggregate-associated SOC and total nitrogen (TN) respond to no-tillage remain unclear. Through a global meta-analysis of 91 studies in cropland ecosystems, we evaluated the effects of no-tillage on soil aggregates and their associated SOC and TN concentrations. On average, no-tillage treatment significantly decreased the proportions of microaggregates (MA) by 21.4 % (95 % CI, -25.5 to -17.3 %) and silt+clay size particles (SIC) by 24.1 (95 % CI, -30.9 to -17.0 %), and increased the proportions of large macroaggregate (LA) by 49.5 % (95 % CI, 36.7-63.0 %) and small macroaggregate (SA) by 6.1 % (95 % CI, 2.0-10.9 %) compared to those in conventional tillage. The SOC concentrations for all three aggregate sizes increased significantly with no tillage: for LA by 28.2 % (95 % CI, 18.8-39.5 %), SA by 18.0 % (95 % CI, 12.8-23.3 %), and MA by 9.1 % (95 % CI, 2.6-16.8 %). TN also increased significantly for all sizes with no tillage, with LA by 13.6 % (95 % CI, 8.6-17.6 %), SA by 11.0 % (95 % CI, 5.0-17.0 %), MA by 11.7 % (95 % CI, 7.0-16.4 %), and SIC by 7.6 % (95 % CI, 2.4-13.8 %). The magnitude of the no-tillage treatment effect on soil aggregation, aggregate-associated SOC and TN varied with the environmental and experimental conditions. The positive effect on the proportions of LA occurred with initial soil organic matter (SOM) content >10 g kg-1, whereas SOM <10 g kg-1 did not change significantly. Additionally, the effect size of NTS compared with CTS was lower than that of NT compared with CT. These findings suggest that NTS may promote physically protective SOC accumulation through the formation of macroaggregates by reducing disturbance destruction and increasing plant-derived binding agents. The findings highlight that no-tillage may enhance the formation of soil aggregates and the associated SOC and TN concentrations in global cropland ecosystems.
RESUMEN
Dissolved organic matter (DOM) influences the environmental fate and toxic effects of trace metals such as mercury (Hg). However, because of limits in DOM analytical techniques and lack of sample diversity in past studies, it remains unclear whether the binding strength of DOM complexed with Hg(II) is related to the DOM properties. In this study, different DOM isolates (n = 26) from various sources were used to determine the conditional stability constant (logK) of DOM-Hg complexes using the equilibrium dialysis ligand exchange (EDLE) method. UV-Vis and fluorescence spectrometry were used to evaluate the correlation between logK values and DOM properties, such as chromophoric moieties, aromaticity, and molecular weight. Results demonstrated that the DOM from different sources presented an extensive range of binding strengths to Hg(II), because of their heterogeneous properties. Moreover, DOM chromophores, including aromaticity and molecular weight, are critical indicators of the DOM-Hg affinity in ambient-relevant circumstances. Significantly, higher terrestrial DOM led to greater DOM-Hg affinity. Additionally, this study supports that UV-Vis and fluorescence spectroscopy can be used to estimate DOM composition and its binding strength with Hg(II). Furthermore, the observed relationship between logK and DOM properties provided a possible pathway of explanation for the spatial co-variations between Hg(II) concentrations and DOM characters observed in previous field investigations.
Asunto(s)
Mercurio , Materia Orgánica Disuelta , Espectrometría de FluorescenciaRESUMEN
The newly deposited mercury (Hg) is more readily methylated to methylmercury (MeHg) than native Hg in paddy soil. However, the biogeochemical processes of the newly deposited Hg in soil are still unknown. Here, a field experimental plot together with a stable Hg isotope tracing technique was used to demonstrate the geochemical fractionation (partitioning and redistribution) of the newly deposited Hg in paddy soils during the rice-growing period. We showed that the majority of Hg tracer (200Hg, 115.09 ± 0.36 µg kg-1) was partitioned as organic matter bound 200Hg (84.6-89.4%), followed by residual 200Hg (7.6-8.1%), Fe/Mn oxides bound 200Hg (2.8-7.2%), soluble and exchangeable 200Hg (0.05-0.2%), and carbonates bound 200Hg (0.04-0.07%) in paddy soils. Correlation analysis and partial least squares path modeling revealed that the coupling of autochthonous dissolved organic matter and poorly crystalline Fe (oxyhydr)oxides played a predominant role in controlling the redistribution of the newly deposited Hg among geochemical fractions (i.e., fraction changes). The expected aging processes of the newly deposited Hg were absent, potentially explaining the high bioavailability of these Hg in paddy soil. This study implies that other Hg pools (e.g., organic matter bound Hg) should be considered instead of merely soluble Hg pools when evaluating the environmental risks of Hg from atmospheric depositions.
Asunto(s)
Mercurio , Compuestos de Metilmercurio , Oryza , Contaminantes del Suelo , Monitoreo del Ambiente , Isótopos/análisis , Isótopos/metabolismo , Mercurio/análisis , Compuestos de Metilmercurio/análisis , Oryza/metabolismo , Óxidos/metabolismo , Suelo/química , Contaminantes del Suelo/metabolismoRESUMEN
Modified biochar is widely used as a soil amendment in agricultural systems to improve crop yields and remove environmental pollutants. The water-soluble fraction of biochar, called biochar-derived dissolved organic matter (DOMBC), is the most active biochar component. However, the correlation between the optical properties of DOMBC and its biogeochemical activity remain unclear. In this study, one biochar and six modified derivatives were used to extract DOMBC and characterize its optical properties. The biogeochemical reactivities of DOMBC were determined using biodegradation, photodegradation, and electron-donating capacity assays. The results show that modification changes the biochar characteristics, leading to a variety of DOMBC properties. The DOMBC from modified biochars degrades more rapidly than the original biochar. On the other hand, modification reduces the redox functional groups in DOMBC, resulting in a lower electron-donating capacity of DOM samples. However, the modifications did not seem to affect photodegradation. Not all spectral parameters provide information about the correlations between the DOMBC properties and biogeochemical reactivity. However, two fundamental properties, that is, the specific UV absorbance at 254 nm (SUVA254, showing aromaticity) and spectral slopes over the ranges of 275-295 nm of the UV absorbance (S275-295, showing molecular weight), are the dominant factors affecting the biodegradation and electron-donating capacities of DOMBC. In this study, a rapid and straightforward method is presented, which can be used to characterize DOMBC and predict the reactivity of biochar that is used as an environmental amendment to minimize toxic organic compounds.