Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
BMC Genomics ; 23(1): 486, 2022 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-35787252

RESUMEN

BACKGROUND: Noncoding RNAs (ncRNAs), including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs), are pivotal regulators involved in the pathogenic mechanism of multiple coronaviruses. Porcine deltacoronavirus (PDCoV) has evolved multiple strategies to escape the innate immune response of host cells, but whether ncRNAs are involved in this process during PDCoV infection is still unknown. RESULTS: In this study, the expression profiles of miRNAs, lncRNAs and mRNAs in IPEC-J2 cells infected with PDCoV at 0, 12 and 24 hours postinfection (hpi) were identified through small RNA and RNA sequencing. The differentially expressed miRNAs (DEmiRNAs), lncRNAs (DElncRNAs) and mRNAs (DEmRNAs) were screened from the comparison group of IPEC-J2 cells at 0 and 12 hpi as well as the comparison group of IPEC-J2 cells at 12 and 24 hpi. The target genes of these DEncRNAs were predicted. The bioinformatics analysis of the target genes revealed multiple significantly enriched functions and pathways. Among them, the genes that were associated with innate immunity were specifically screened. The expression of innate immunity-related ncRNAs and mRNAs was validated by RT-qPCR. Competing endogenous RNA (ceRNA) regulatory networks among innate immunity-related ncRNAs and their target mRNAs were established. Moreover, we found that the replication of PDCoV was significantly inhibited by two innate immunity-related miRNAs, ssc-miR-30c-3p and ssc-miR-374b-3p, in IPEC-J2 cells. CONCLUSIONS: This study provides a data platform to conduct studies of the pathogenic mechanism of PDCoV from a new perspective and will be helpful for further elucidation of the functional role of ncRNAs involved in PDCoV escaping the innate immune response.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Animales , Inmunidad Innata/genética , MicroARNs/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , ARN no Traducido , Porcinos
2.
Int J Biol Macromol ; : 132755, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38821295

RESUMEN

Interferon-induced transmembrane 3 (IFITM3) is a membrane-associated protein that exhibits antiviral activities against a wide range of viruses through interactions with other cellular and viral proteins. However, knowledge of the mechanisms of IFITM3 in Porcine deltacoronavirus (PDCoV) infection has been lacking. In this study, we demonstrate that IFN-α treatment induces the upregulation of IFITM3 activity and thus attenuates PDCoV infection. PDCoV replication is inhibited in a dose-dependent manner by IFITM3 overexpression. To clarify the novel roles of IFITM3 during PDCoV infection, proteins that interact with IFITM3 were screened by TAP/MS in an ST cell line stably expressing IFITM3 via a lentivirus. We identified known and novel candidate IFITM3-binding proteins and analyzed the protein complexes using GO annotation, KEGG pathway analysis, and protein interaction network analysis. A total of 362 cellular proteins associate with IFITM3 during the first 24 h post-infection. Of these proteins, the relationship between IFITM3 and Rab9a was evaluated by immunofluorescence colocalization analysis using confocal microscopy. IFITM3 partially colocalized with Rab9a and Rab9a exhibited enhanced colocalization following PDCoV infection. We also demonstrated that IFITM3 interacts specifically with Rab9a. Our results considerably expand the protein networks of IFITM3, suggesting that IFITM3 participates in multiple cellular processes during PDCoV infection.

3.
Infect Genet Evol ; 96: 105078, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34508884

RESUMEN

A fowl aviadenovirus serotype 4 (FAdV-4), Y17215-1, was isolated from the liver of chickens with Hydropericardium-hepatitissyndrome(HHS) in a chicken farm of Tianjin, China. Obvious cytopathic effects were observed in the infected chicken liver hepatocellular carcinoma cell line (LMH cells) at 24 h post infection (hpi), which consisted of enlarger and rounder shape of cells. The typical and specific green fluorescence was observed by indirect immunofluorescence assay (IFA). Tissue Culture Infectious Dose50 (TCID50) of it measured after five stable passage in LMH cells reached 106.5TCID50/0.1 mL. The strain was inoculated through allantoic membrane of 10-day specific pathogen free(SPF) Chick embryos, the thicker allantoic membranes were observed at 120 hpi. 7-day-old SPF chickens were inoculated with the strain via intramuscular (i.m.) or intranasal (i.n.) injection which resulted in 100% mortality of test chickens. Additionally, the sickness and death of cohabitation chickens in the test group were observed which indicated that the virus can infect healthy chickens by horizontal transmission. The sick chickens showed depression, anorexia and diarrhea with green watery feces. Y17215-1-inoculated chickens mainly presented swollen liver with blood spot, and the enhancement of effusion or yellow gel like effusion that were observed in the pericardium through necropsy. Histopathological examination showed focal necrosis of hepatocytes and characteristic eosinophilic inclusion bodies in the cytoplasm. The results showed that the Y17215-1 isolate had high pathogenicity to SPF chickens. The phylogenetic analysis of the major structural proteins including hexon, fiber-1 and fiber-2 revealed that Y17215-1 strain belongs to C species of fowl aviadenovirus of aviadenovirus family, and has high homology with other Chinese strains isolated in recent years, but was distinct from ON1、MX-SHP95、KR5 and other foreign isolates. This study laid a foundation for further study of epidemiological investigation, pathogenic mechanism as well as the diagnosis and control technology of FAdV-4.


Asunto(s)
Infecciones por Adenoviridae/veterinaria , Aviadenovirus/genética , Pollos , Enfermedades de las Aves de Corral/virología , Infecciones por Adenoviridae/virología , Animales , Aviadenovirus/clasificación , Aviadenovirus/aislamiento & purificación , Embrión de Pollo , China , Filogenia , Serogrupo
4.
Viral Immunol ; 34(10): 714-721, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34647822

RESUMEN

Pseudorabies (PR), the causative agent of Aujeszky's disease, has rapidly increased in recent years and has caused significant economic losses. To understand the seroprevalence and epidemiological characteristics of PR in Tianjin, China, a total of 23,627 blood and 1,093 tissue samples were collected from 228 pig farms during January 2010 to December 2018. The Pseudorabies virus (PRV) glycoprotein E (gE) antibody was tested by enzyme-linked immunosorbent assay (ELISA), and wild-type PRV (WT PRV) was detected by gE-polymerase chain reaction (PCR). Macroscopic and microscopic lesions were observed in tissue samples. The results showed that 46.70% of the serum samples and 49.76% of pig farms were seropositive for PRV gE antibody based on the ELISA results, and 13.54% of the tissue samples were positive for WT PRV detected by PCR. The positive rate of serum samples increased rapidly after 2011 and reached 62.40% in 2013. Although it gradually decreased from 2014 to 2018, the positive rate of serum samples remained at a high level. The positive rate of pig farms showed the same trend. Moreover, after 2011, the detection rate of WT PRV was increased rapidly and was significantly higher than in 2010 and 2011. Macroscopic and microscopic lesions were observed in various tissues during histopathological examination. Based on univariate analysis, the increased risk of seropositivity was associated with the immune status and infection in sows and fattening pigs. These findings demonstrate that PR was prevalent in the region of Tianjin, China. These epidemiological data can assist in the control of PR.


Asunto(s)
Herpesvirus Suido 1 , Seudorrabia , Enfermedades de los Porcinos , Animales , China/epidemiología , Granjas , Femenino , Herpesvirus Suido 1/genética , Estudios Seroepidemiológicos , Porcinos
5.
Vet Microbiol ; 216: 176-182, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29519513

RESUMEN

NADC30-like porcine reproductive and respiratory syndrome virus (PRRSV) causing clinical disease outbreaks has been recently reported in China. The recombination occurring among PRRSV strains could lead to the emergence of novel and more virulent viruses. In our previous study, a novel recombinant type 2 PRRSV (TJnh1501) between NADC30-like and modified-live virus (MLV)-like derived from the Chinese highly pathogenic PRRSV was shown to have higher pathogenicity than NADC30-like PRRSV. It remains unknown whether the emergence of the novel recombinant PRRSV strain can lead to variable protection efficacy of the MLV vaccines. In this paper, two typical commercial MLV vaccines were used to evaluate their efficacy to block TJnh1501 infection and onset of clinical symptoms. Our results showed that both MLV vaccines could shorten the period of fever and reduce viral loads in sera, but were not able to reduce the clinical signs and lung lesions indicating that the two commercial MLV vaccines provide limited cross-protection efficacy against the novel recombinant type 2 PRRSV infection. This study gives valuable suggestions for the use of MLV vaccines to control PRRSV infection in the field.


Asunto(s)
Síndrome Respiratorio y de la Reproducción Porcina/prevención & control , Virus del Síndrome Respiratorio y Reproductivo Porcino/inmunología , Recombinación Genética , Vacunas Atenuadas/inmunología , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Protección Cruzada , Filogenia , Síndrome Respiratorio y de la Reproducción Porcina/inmunología , Virus del Síndrome Respiratorio y Reproductivo Porcino/genética , Virus del Síndrome Respiratorio y Reproductivo Porcino/aislamiento & purificación , Porcinos , Potencia de la Vacuna , Vacunas Atenuadas/administración & dosificación , Carga Viral , Virulencia
6.
Vet Microbiol ; 183: 85-91, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26790939

RESUMEN

Pigs are susceptible to both human and avian influenza viruses and therefore have been proposed to be mixing vessels for the generation of pandemic influenza viruses through reassortment. In this study, for the first time, we report the isolation and genetic analyses of three novel triple-reassortant H1N1 swine influenza viruses from pigs in Tianjin, Northern China. Phylogenetic analysis showed that these novel viruses contained genes from the 2009 pandemic H1N1 (PB2, PB1, PA and NP), Eurasian swine (HA, NA and M) and triple-reassortant swine (NS) lineages. This indicated that the reassortment among the 2009 pandemic H1N1, Eurasian swine and triple-reassortant swine influenza viruses had taken place in pigs in Tianjin and resulted in the generation of new viruses. Furthermore, three human-like H1N1, two classical swine H1N1 and two Eurasian swine H1N1 viruses were also isolated during the swine influenza virus surveillance from 2009 to 2013, which indicated that multiple genetic lineages of swine H1N1 viruses were co-circulating in the swine population in Tianjin, China. The emergence of novel triple-reassortant H1N1 swine influenza viruses may be a potential threat to human health and emphasizes the importance of further continuous surveillance.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , China , Genes Virales/genética , Subtipo H1N1 del Virus de la Influenza A/clasificación , Subtipo H1N1 del Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/virología , Filogenia , ARN Viral/genética , Virus Reordenados/clasificación , Virus Reordenados/genética , Porcinos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda