RESUMEN
In the age of information explosion, the exponential growth of digital data far exceeds the capacity of current mainstream storage media. DNA is emerging as a promising alternative due to its higher storage density, longer retention time, and lower power consumption. To date, commercially mature DNA synthesis and sequencing technologies allow for writing and reading of information on DNA with customization and convenience at the research level. However, under the disconnected and nonspecialized mode, DNA data storage encounters practical challenges, including susceptibility to errors, long storage latency, resource-intensive requirements, and elevated information security risks. Herein, we introduce a platform named DNA-DISK that seamlessly streamlined DNA synthesis, storage, and sequencing on digital microfluidics coupled with a tabletop device for automated end-to-end information storage. The single-nucleotide enzymatic DNA synthesis with biocapping strategy is utilized, offering an ecofriendly and cost-effective approach for data writing. A DNA encapsulation using thermo-responsive agarose is developed for on-chip solidification, not only eliminating data clutter but also preventing DNA degradation. Pyrosequencing is employed for in situ and accurate data reading. As a proof of concept, DNA-DISK successfully stored and retrieved a musical sheet file (228 bits) with lower write-to-read latency (4.4 min of latency per bit) as well as superior automation compared to other platforms, demonstrating its potential to evolve into a DNA Hard Disk Drive in the future.
Asunto(s)
ADN , Microfluídica , ADN/biosíntesis , Microfluídica/métodos , Microfluídica/instrumentación , Análisis de Secuencia de ADN/métodos , Almacenamiento y Recuperación de la Información/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodosRESUMEN
BACKGROUND: Glioma represents the predominant malignant brain tumor. This investigation endeavors to elucidate the impact and prospective mechanisms of glycolysis-related lncARSR on glioma. METHODS: LncARSR level was assessed in normal glial cells and glioma cells. Cell proliferation, migration, and invasion measurements were conducted through CCK-8, wound healing, and transwell assay. Flow cytometry was utilized to measure cell apoptosis and cell cycle. Biochemical assay kits and immunoblotting were employed to measure the content of glycolysis-related indicators and protein expression, respectively. We analyzed the impact of both lncARSR knockdown and overexpression of the Signal Transducer and Activator of Transcription 3 (STAT3) on Hexokinase 2 (HK2) using dual luciferase reporter assays and Chromatin Immunoprecipitation (ChIP) experiments. Further assessment of the impact of lncARSR on glioma progression was conducted through animal experiments. RESULTS: LncARSR was expressed at elevated levels in glioma cells compared to normal glial cells. Overexpressing lncARSR enhanced proliferation, migration, invasion, and G2/M phase arrest in glioma cells and also increased glucose, lactate, ATP production, as well as the expression of HK2, PFK1, PKM2, GLUT1, and LDHA. STAT3 binding to the HK2 gene promoter was weakened following the knockdown of lncARSR. Upregulation of STAT3 reversed the suppressed functions of knocking down lncARSR on cell proliferation, migration, invasion, G2/M phase arrest, and glycolysis and counteracted its promotional effect on cell apoptosis. In vivo, knocking down lncARSR inhibits glioma growth and ki67 and PCNA expression. CONCLUSION: LncARSR promotes the development of glioma by enhancing glycolysis through the STAT3-HK2 axis.
Asunto(s)
Movimiento Celular , Proliferación Celular , Glioma , Glucólisis , Hexoquinasa , ARN Largo no Codificante , Factor de Transcripción STAT3 , Factor de Transcripción STAT3/metabolismo , Glioma/metabolismo , Glioma/patología , Glioma/genética , Hexoquinasa/metabolismo , Hexoquinasa/genética , Humanos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Línea Celular Tumoral , Animales , Movimiento Celular/genética , Ratones , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Ratones Desnudos , Apoptosis , Transducción de SeñalRESUMEN
During infection of a host, Pseudomonas aeruginosa orchestrates global gene expression to adapt to the host environment and counter the immune attacks. P. aeruginosa harbours hundreds of regulatory genes that play essential roles in controlling gene expression. However, their contributions to the bacterial pathogenesis remain largely unknown. In this study, we analysed the transcriptomic profile of P. aeruginosa cells isolated from lungs of infected mice and examined the roles of upregulated regulatory genes in bacterial virulence. Mutation of a novel regulatory gene pvrA (PA2957) attenuated the bacterial virulence in an acute pneumonia model. Chromatin immunoprecipitation (ChIP)-Seq and genetic analyses revealed that PvrA directly regulates genes involved in phosphatidylcholine utilization and fatty acid catabolism. Mutation of the pvrA resulted in defective bacterial growth when phosphatidylcholine or palmitic acid was used as the sole carbon source. We further demonstrated that palmitoyl coenzyme A is a ligand for the PvrA, enhancing the binding affinity of PvrA to its target promoters. An arginine residue at position 136 was found to be essential for PvrA to bind palmitoyl coenzyme A. Overall, our results revealed a novel regulatory pathway that controls genes involved in phosphatidylcholine and fatty acid utilization and contributes to the bacterial virulence.
Asunto(s)
Proteínas Bacterianas/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Genes Bacterianos/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/patogenicidad , Animales , Arginina/metabolismo , Secuencia de Bases , Inmunoprecipitación de Cromatina , Modelos Animales de Enfermedad , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Ligandos , Ratones , Modelos Moleculares , Mutación , Ácido Palmítico/metabolismo , Palmitoil Coenzima A/metabolismo , Fosfatidilcolinas/metabolismo , Neumonía Bacteriana/microbiología , Regiones Promotoras Genéticas , Pseudomonas aeruginosa/genética , Transcriptoma , Virulencia/genéticaRESUMEN
Pseudomonas aeruginosa is an opportunistic pathogenic bacterium whose type III secretion system (T3SS) plays a critical role in acute infections. Translocation of the T3SS effectors into host cells induces cytotoxicity. In addition, the T3SS promotes the intracellular growth of P. aeruginosa during host infections. The T3SS regulon genes are regulated by an AraC-type regulator, ExsA. In this study, we found that an extracellular metalloprotease encoded by impA (PA0572) is under the regulation of ExsA. An ExsA consensus binding sequence was identified upstream of the impA gene, and direct binding of the site by ExsA was demonstrated via an electrophoretic mobility shift assay. We further demonstrate that secreted ImpA cleaves the macrophage surface protein CD44, which inhibits the phagocytosis of the bacterial cells by macrophages. Combined, our results reveal a novel ExsA-regulated virulence factor that cooperatively inhibits the functions of macrophages with the T3SS.
Asunto(s)
Proteínas Bacterianas/metabolismo , Macrófagos/inmunología , Metaloproteasas/metabolismo , Fagocitosis/inmunología , Pseudomonas aeruginosa/inmunología , Serina Endopeptidasas/metabolismo , Transactivadores/metabolismo , Animales , Proteínas Bacterianas/genética , Línea Celular Tumoral , Ensayo de Cambio de Movilidad Electroforética , Femenino , Regulación Bacteriana de la Expresión Génica/genética , Células HeLa , Humanos , Receptores de Hialuranos/metabolismo , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Pseudomonas aeruginosa/genética , Transactivadores/genética , Sistemas de Secreción Tipo III/genética , Sistemas de Secreción Tipo III/metabolismoRESUMEN
Pseudomonas aeruginosa is an opportunistic bacterial pathogen and is intrinsically resistant to a variety of antibiotics. Oligoribonuclease (Orn) is a 3'-to-5' exonuclease that degrades nanoRNAs. The Orn controls biofilm formation by influencing the homeostasis of cyclic-di-GMP. Previously, we demonstrated that Orn contributes to the tolerance of P. aeruginosa to fluoroquinolone antibiotics by affecting the production of pyocins. In this study, we found that mutation in the orn gene reduces bacterial tolerance to aminoglycoside and ß-lactam antibiotics, which is mainly due to a defective response to oxidative stresses. The major catalase KatA is downregulated in the orn mutant, and overexpression of the katA gene restores the bacterial tolerance to oxidative stresses and the antibiotics. We further demonstrated that Orn influenced the translation of the katA mRNA and narrowed down the region in the katA mRNA that is involved in the regulation of its translation. Therefore, our results revealed a novel role of the Orn in bacterial tolerance to oxidative stresses as well as aminoglycoside and ß-lactam antibiotics.
Asunto(s)
Aminoglicósidos/farmacología , Antibacterianos/farmacología , Exorribonucleasas/metabolismo , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Exorribonucleasas/genética , Humanos , Estrés Oxidativo/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismoRESUMEN
The Legionella pneumophila serogroups O1, O4, O6, O7, O10 and O13 are pathogenic strains associated with pneumonia. The surface O-antigen gene clusters of L. pneumophila serogroups O4, O6, O7, O10 and O13 were sequenced and analyzed, with the function annotated on the basis of homology to that of the genes of L. pneumophila serogroup O1 (L. pneumophila subsp. pneumophila str. Philadelphia 1). The gene locus of the six L. pneumophila serogroups contains genes of yvfE, neuABCD, pseA-like for nucleotide sugar biosynthesis, wecA for sugar transfer, and wzm as well as wzt for O-antigen processing. The detection of O-antigen genes allows the fine differentiation at species and serogroup level without the neccessity of nucleotide sequencing. The O-antigen-processing genes wzm and wzt, which were found to be distinctive for different for different serogroups, have been used as the target genes for the detection and identification of L. pneumophila strains of different O serogroups. In this report, a multiplex PCR assay based on wzm or wzt that diferentiates all the six serogroups by amplicon size was developed with the newly designed specific primer pairs for O1 and O7, and the specific primer pairs for O4, O6, O10, and O13 reported previously. The array was validated by analysis of 34 strains including 15 L. pneumophila O-standard reference strains, eight reference strains of other Legionella non-pneumophila species, six other bacterial species, and five L. pneumophila environmental isolates. The detection sensitivity was one ng genomic DNA. The accurate and sensitive assay is suitable for the identification and detection of strains of these serogroups in environmental and clinical samples.
Asunto(s)
Legionella pneumophila/clasificación , Legionella pneumophila/genética , Técnicas de Diagnóstico Molecular/métodos , Tipificación Molecular/métodos , Familia de Multigenes , Reacción en Cadena de la Polimerasa Multiplex/métodos , Antígenos O/genética , Cartilla de ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Sensibilidad y Especificidad , Análisis de Secuencia de ADN , SerogrupoRESUMEN
Protein engineering aimed at increasing temperature tolerance through iterative mutagenesis and high-throughput screening is often labor-intensive. Here, we developed a deep evolution (DeepEvo) strategy to engineer protein high-temperature tolerance by generating and selecting functional sequences using deep learning models. Drawing inspiration from the concept of evolution, we constructed a high-temperature tolerance selector based on a protein language model, acting as selective pressure in the high-dimensional latent spaces of protein sequences to enrich those with high-temperature tolerance. Simultaneously, we developed a variant generator using a generative adversarial network to produce protein sequence variants containing the desired function. Afterward, the iterative process involving the generator and selector was executed to accumulate high-temperature tolerance traits. We experimentally tested this approach on the model protein glyceraldehyde 3-phosphate dehydrogenase, obtaining 8 variants with high-temperature tolerance from just 30 generated sequences, achieving a success rate of over 26%, demonstrating the high efficiency of DeepEvo in engineering protein high-temperature tolerance.
RESUMEN
Black rice was fermented with Neurospora crassa, after which the dietary fiber (DF) extracted from it was characterized and evaluated for its cholesterol-lowering effect in mice. The findings demonstrated that fermentation increased the level of soluble DF from 17.27% ± 0.12 to 29.69% ± 0.26 and increased the adsorption capacity of DF for water, oil, cholesterol, glucose and sodium cholate. The fermented DF had a more loose and porous structure than that extracted from unfermented rice. Additionally, feeding with DF from the fermented black rice significantly reduced body weight, lowered total cholesterol levels and improved the lipid profile in mice gavaged with a high dose (5 g per kg bw) or a low dose (2.5 g per kg·bw). ELISA showed that the hepatic expression of typical proteins and enzymes that are involved in cholesterol metabolism was regulated by the fermented rice DF, leading to reduced cholesterol production and increased cholesterol clearance. The fermented DF also modified the gut microbiota composition (e.g. Firmicutes reduced and Akkermansia increased), which promoted the production of short-chain fatty acids. In conclusion, fermentation can modify the structure and function of DF in black rice and the fermented dietary fiber has excellent cholesterol lowering effects possibly by cholesterol adsorption, cholesterol metabolism modulation, and intestinal microflora regulation.
Asunto(s)
Oryza , Ratones , Animales , Oryza/metabolismo , Colesterol/metabolismo , Fibras de la Dieta/análisis , Hígado/metabolismo , FermentaciónRESUMEN
WCK 5222 (cefepime/zidebactam) is a ß-lactam/ß-lactamase inhibitor combination that is effective against a broad range of highly drug-resistant bacterial pathogens, including those producing metallo-ß-lactamase. In this study, we isolated a multidrug-resistant Pseudomonas aeruginosa clinical strain that is resistant to a variety of ß-lactam antibiotics and the ceftazidime-avibactam combination. A metallo-ß-lactamase gene blaDIM-2 was identified on a self-transmissible megaplasmid in the strain, which confers the resistance to ß-lactam antibiotics, leaving WCK 5222 potentially one of the last treatment resorts. In vitro passaging assay combined with whole-genome sequencing revealed mutations in the pbpA gene (encoding the zidebactam target protein PBP2) in the evolved resistant mutants. Among the mutations, a V516M mutation increased the bacterial virulence in a murine acute pneumonia model. Reconstitution of the mutations in the reference strain PAO1 verified their roles in the resistance to zidebactam and revealed their influences on cell morphology in the absence and presence of zidebactam. Microscale thermophoresis (MST) assays demonstrated that the mutations reduced the affinity between PBP2 and zidebactam to various extents. Overall, our results revealed that mutations in the pbpA gene might be a major cause of evolved resistance to WCK 5222 in clinical settings. IMPORTANCE Antibiotic resistance imposes a severe threat on human health. WCK 5222 is a ß-lactam/ß-lactamase inhibitor combination that is composed of cefepime and zidebactam. It is one of the few antibiotics in clinical trials that are effective against multidrug-resistant Pseudomonas aeruginosa, including those producing metallo-ß-lactamases. Understanding the mechanisms and development of bacterial resistance to WCK 5222 may provide clues for the development of strategies to suppress resistant evolvement. In this study, we performed an in vitro passaging assay by using a multidrug-resistant P. aeruginosa clinical isolate. Our results revealed that mutations in the zidebactam target protein PBP2 play a major role in the bacterial resistance to WCK 5222. We further demonstrated that the mutations reduced the affinities between PBP2 and zidebactam and resulted in functional resistance of PBP2 to zidebactam.
Asunto(s)
Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Carbapenémicos/farmacología , Cefalosporinas/farmacología , Ciclooctanos/farmacología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Ceftazidima/farmacología , Combinación de Medicamentos , Femenino , Humanos , Ratones , Ratones Endogámicos BALB C , Pruebas de Sensibilidad Microbiana , Mutación , Proteínas de Unión a las Penicilinas/genética , Proteínas de Unión a las Penicilinas/metabolismo , Pseudomonas aeruginosa/metabolismo , beta-Lactamasas/genética , beta-Lactamasas/metabolismoRESUMEN
Carbon metabolism plays an important role in bacterial physiology and pathogenesis. The type III secretion system (T3SS) of Pseudomonas aeruginosa is a virulence factor that contributes to acute infections. It has been demonstrated that bacterial metabolism affects the T3SS. Meanwhile, expression of T3SS genes is negatively regulated by the small RNAs RsmY and RsmZ. In this study, we studied the relationship between the dihydrolipoamide acetyltransferase gene aceF and the T3SS. Our results reveal an upregulation of RsmY and RsmZ in the aceF mutant, which represses the expression of the T3SS genes. Meanwhile, the aceF mutant is more tolerant to hydrogen peroxide. We demonstrate that the expression levels of the catalase KatB and the alkyl hydroperoxide reductase AhpB are increased in the aceF mutant. The simultaneous deletion of rsmY and rsmZ in the aceF mutant restored the expression levels of katB and ahpB, as well as bacterial susceptibility to hydrogen peroxide. Thus, we identify a novel role of AceF in the virulence and oxidative response of P. aeruginosa.
RESUMEN
Posttranscriptional regulation plays an essential role in the quick adaptation of pathogenic bacteria to host environments, and RNases play key roles in this process by modifying small RNAs and mRNAs. We find that the Pseudomonas aeruginosa endonuclease YbeY is required for rRNA processing and the bacterial virulence in a murine acute pneumonia model. Transcriptomic analyses reveal that knocking out the ybeY gene results in downregulation of oxidative stress response genes, including the catalase genes katA and katB Consistently, the ybeY mutant is more susceptible to H2O2 and neutrophil-mediated killing. Overexpression of katA restores the bacterial tolerance to H2O2 and neutrophil killing as well as virulence. We further find that the downregulation of the oxidative stress response genes is due to defective expression of the stationary-phase sigma factor RpoS. We demonstrate an autoregulatory mechanism of RpoS and find that ybeY mutation increases the level of a small RNA, ReaL, which directly represses the translation of rpoS through the 5' UTR of its mRNA and subsequently reduces the expression of the oxidative stress response genes. In vitro assays demonstrate direct degradation of ReaL by YbeY. Deletion of reaL or overexpression of rpoS in the ybeY mutant restores the bacterial tolerance to oxidative stress and the virulence. We also demonstrate that YbeZ binds to YbeY and is involved in the 16S rRNA processing and regulation of reaL and rpoS as well as the bacterial virulence. Overall, our results reveal pleiotropic roles of YbeY and the YbeY-mediated regulation of rpoS through ReaL.IMPORTANCE The increasing bacterial antibiotic resistance imposes a severe threat to human health. For the development of effective treatment and prevention strategies, it is critical to understand the mechanisms employed by bacteria to grow in the human body. Posttranscriptional regulation plays an important role in bacterial adaptation to environmental changes. RNases and small RNAs are key players in this regulation. In this study, we demonstrate critical roles of the RNase YbeY in the virulence of the pathogenic bacterium Pseudomonas aeruginosa We further identify the small RNA ReaL as the direct target of YbeY and elucidate the YbeY-regulated pathway on the expression of bacterial virulence factors. Our results shed light on the complex regulatory network of P. aeruginosa and indicate that inference with the YbeY-mediated regulatory pathway might be a valid strategy for the development of a novel treatment strategy.
Asunto(s)
Proteínas Bacterianas/metabolismo , Endorribonucleasas/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidad , Procesamiento Postranscripcional del ARN , Virulencia , Animales , Proteínas Bacterianas/genética , Endorribonucleasas/genética , Femenino , Regulación Bacteriana de la Expresión Génica , Células HL-60 , Humanos , Pulmón/microbiología , Ratones , Ratones Endogámicos BALB C , Pseudomonas aeruginosa/enzimología , ARN Bacteriano/metabolismo , Factor sigma/genéticaRESUMEN
CdS heterostructure nanomaterials are attractive for their potential applications in integrated optoelectronic devices. Herein, the high-quality CdS/CdS:SnS2 superlattice nanowires were synthesized through a micro-environmental controlled co-evaporation technique, which shows periodic emission properties and that their structures are periodic and alternating. For the first time, we demonstrate the fabrication of high-performance ultraviolet photodetectors using unique CdS/CdS:SnS2 superlattice nanowires. The optoelectronic properties of the photodetectors were studied and compared to those devices based on pure CdS nanowires. The as-fabricated photodetectors (under 365 nm) based on CdS/CdS:SnS2 superlattice nanowires showed a high photocurrent to dark current ratio of 10(5), a large photoresponsivity of 2.5 × 10(3) A W(-1), a fast response time of 10 ms and an excellent external quantum efficiency of 8.6 × 10(5) at room temperature, which shows better performance than pure CdS nanowires photodetectors. The results indicate that CdS/CdS:SnS2 superlattice nanowires are very promising potential candidates in nanoscale electronic and optoelectronic devices.
RESUMEN
This study established a multiplex PCR-based microarray to detect simultaneously a diverse panel of 17 sexually transmitted diseases (STDs)-associated pathogens including Neisseria gonorrhoeae, Chlamydia trachomatis, Mycoplasma genitalium, Mycoplasma hominis, Ureaplasma, Herpes simplex virus (HSV) types 1 and 2, and Human papillomavirus (HPV) types 6, 11, 16, 18, 31, 33, 35, 39, 54 and 58. The target genes are 16S rRNA gene for N. gonorrhoeae, M. genitalium, M. hominism, and Ureaplasma, the major outer membrane protein gene (ompA) for C. trachomatis, the glycoprotein B gene (gB) for HSV; and the L1 gene for HPV. A total of 34 probes were selected for the microarray including 31 specific probes, one as positive control, one as negative control, and one as positional control probe for printing reference. The microarray is specific as the commensal and pathogenic microbes (and closely related organisms) in the genitourinary tract did not cross-react with the microarray probes. The microarray is 10 times more sensitive than that of the multiplex PCR. Among the 158 suspected HPV specimens examined, the microarray showed that 49 samples contained HPV, 21 samples contained Ureaplasma, 15 contained M. hominis, four contained C. trachomatis, and one contained N. gonorrhoeae. This work reports the development of the first high through-put detection system that identifies common pathogens associated with STDs from clinical samples, and paves the way for establishing a time-saving, accurate and high-throughput diagnostic tool for STDs.