Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nano Lett ; 24(32): 9816-9823, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39094116

RESUMEN

Component modulation endows Mn-based electrodes with prominent energy storage properties due to their adjustable crystal structure characteristics. Herein, ZnMn2(PO4)2·nH2O (ZMP·nH2O) was obtained by a hydration reaction from ZnMn2(PO4)2 (ZMP) during an electrode-aging evolution. Benefiting from the introduction of lattice H2O molecules into the ZMP structure, the ion transmission path has been expanded along with the extended d-spacing, which will further facilitate the ZMP → ZMP·nH2O phase evolution and electrochemical reaction kinetics. Meanwhile, the hydrogen bond can be generated between H2O and O in PO43-, which strengthens the structure stability of ZMP·nH2O and lowers the conversion barrier from ZMP to ZMP·4H2O during the Zn2+ uptake/removal process. Thereof, ZMP·nH2O delivers enhanced electrochemical reaction kinetics with robust structure tolerance (106.52 mA h g-1 at 100 mA g-1 over 620 cycles). This high-energy aqueous Zn||ZMP·nH2O battery provides a facile strategy for engineering and exploration of high-performance ZIBs to realize the practical application of Mn-based cathodes.

2.
ACS Appl Mater Interfaces ; 16(29): 37818-37828, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39004817

RESUMEN

The large-scale application of aqueous Al-air batteries is highly restricted by the performance of Al anodes. The severe self-corrosion and hydrogen evolution of the Al anode in a concentrated alkaline electrolyte are the main reason. Here, aimed at relieving side reactions and enhancing the utilization of metal Al, we propose a hybrid electrolyte additive of 2-mercaptobenzothiazole (MBT) and ZnO to form a protective film at the anode/electrolyte interface and to decrease the hydrogen evolution active site. The strong absorption capability of MBT on the metal surface, along with the reduced Zn-containing layer, enables a compact protective film with high hydrogen evolution potential on the Al surface. With this benefit, the hydrogen evolution reaction (HER) inhibition efficiency is up to 83.58%, endowing a superior Al-air battery with an energy density of 2376.71 Wh kgAl-1 under a current density of 25 mA cm-2. The conception of constructing a hybrid protective film on the metal surface not only favors the development of metal-air batteries but also facilitates metal corrosion protection.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda