Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
J Nat Prod ; 84(8): 2282-2294, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34264084

RESUMEN

Acute lung injury (ALI) is an important public health problem. The present work investigated whether dehydrodieugenol B treatment, a compound isolated from Brazilian plant Nectandra leucantha (Lauraceae), modulates experimental ALI and compared the observed effects to eugenol. Effects of dehydrodieugenol B in vitro in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells were evaluated. The lung and systemic inflammatory profile, lung function, and possible mechanisms involved in BALB/C male mice (6-8 weeks) with ALI induced by LPS instillation (5 mg/kg) was assayed. Dehydrodieugenol B did not affect the cell viability and inhibited the increase in NO release and IL-1ß and IL-6 gene expression induced by LPS. In vivo, both compounds reduced lung edema, inflammatory cells, and the IL-6 and IL-1 ß levels in bronchoalveolar lavage fluid, as well as reduced inflammatory cell infiltration and those positive to iNOS, MMP-9, and TIMP-1, and reduced the collagen content and the 8-isoprostane expression in lung tissue. Eugenol and dehydrodieugenol B also inhibited the phosphorylation of Jc-Jun-NH2 terminal Kinase (JNK), a signaling protein involved in the MAPKinase pathway. There was no effect of these compounds in lung function. Therefore, eugenol and dehydrodieugenol B ameliorates several features of experimental ALI and could be considered as a pharmacological tool to ameliorate acute lung inflammation.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Anisoles/farmacología , Eugenol/farmacología , Lauraceae/química , Neumonía/tratamiento farmacológico , Lesión Pulmonar Aguda/inducido químicamente , Animales , Brasil , Lipopolisacáridos , Masculino , Ratones , Ratones Endogámicos BALB C , Fitoquímicos/farmacología , Hojas de la Planta/química , Neumonía/inducido químicamente , Células RAW 264.7
2.
Mediators Inflamm ; 2019: 1356356, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31565031

RESUMEN

Asthma allergic disease is caused by airway chronic inflammation. Some intracellular signaling pathways, such as MAPK and STAT3-SOCS3, are involved in the control of airway inflammation in asthma. The flavonoid sakuranetin demonstrated an anti-inflammatory effect in different asthma models. Our aim was to clarify how sakuranetin treatment affects MAPK and STAT3-SOCS3 pathways in a murine experimental asthma model. Mice were submitted to an asthma ovalbumin-induction protocol and were treated with vehicle, sakuranetin, or dexamethasone. We assayed the inflammatory profile, mucus production, and serum antibody, STAT3-SOCS3, and MAPK levels in the lungs. Morphological alterations were also evaluated in the liver. LPS-stimulated RAW 264.7 cells were used to evaluate the effects of sakuranetin on nitric oxide (NO) and cytokine production. In vivo, sakuranetin treatment reduced serum IgE levels, lung inflammation (eosinophils, neutrophils, and Th2/Th17 cytokines), and respiratory epithelial mucus production in ovalbumin-sensitized animals. Considering possible mechanisms, sakuranetin inhibits the activation of ERK1/2, JNK, p38, and STAT3 in the lungs. No alterations were found in the liver for treated animals. Sakuranetin did not modify in vitro cell viability in RAW 264.7 and reduced NO release and gene expression of IL-1ß and IL-6 induced by LPS in these cells. In conclusion, our data showed that the inhibitory effects of sakuranetin on eosinophilic lung inflammation can be due to the inhibition of Th2 and Th17 cytokines and the inhibition of MAPK and STAT3 pathways, reinforcing the idea that sakuranetin can be considered a relevant candidate for the treatment of inflammatory allergic airway disease.


Asunto(s)
Flavonoides/uso terapéutico , Hipersensibilidad/tratamiento farmacológico , Hipersensibilidad/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Extractos Vegetales/uso terapéutico , Factor de Transcripción STAT3/metabolismo , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Animales , Western Blotting , Citocinas/metabolismo , Espectroscopía de Resonancia Magnética , Masculino , Ratones , Ratones Endogámicos BALB C , Células RAW 264.7
3.
Ecotoxicol Environ Saf ; 167: 494-504, 2019 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-30368143

RESUMEN

Endogenous acetylcholine (ACh), which depends of the levels of vesicular ACh transport (VAChT) to be released, is the central mediator of the cholinergic anti-inflammatory system. ACh controls the release of cytokine in different models of inflammation. Diesel exhaust particles (DEP) are one of the major environmental pollutants produced in large quantity by automotive engines in urban center. DEP bind the lung parenchyma and induce inflammation. We evaluated whether cholinergic dysfunction worsens DEP-induced lung inflammation. Male mice with decreased ACh release due to reduced expression of VAChT (VAChT-KD mice) were submitted to DEP exposure for 30 days (3 mg/mL of DEP, once a day, five days a week) or saline. Pulmonary function and inflammation as well as extracellular matrix fiber deposition were evaluated. Additionally, airway and nasal epithelial mucus production were quantified. We found that DEP instillation worsened lung function and increased lung inflammation. Higher levels of mononuclear cells were observed in the peripheral blood of both wild-type (WT) and VAChT-KD mice. Also, both wild-type (WT) and VAChT-KD mice showed an increase in macrophages in bronchoalveolar lavage fluid (BALF) as well as increased expression of IL-4, IL-6, IL-13, TNF-α, and NF-κB in lung cells. The collagen fiber content in alveolar septa was also increased in both genotypes. On the other hand, we observed that granulocytes were increased only in VAChT-KD peripheral blood. Likewise, increased BALF lymphocytes and neutrophils as well as increased elastic fibers in alveolar septa, airway neutral mucus, and nasal epithelia acid mucus were observed only in VAChT-KD mice. The cytokines IL-4 and TNF-α were also higher in VAChT-KD mice compared with WT mice. In conclusion, decreased ability to release ACh exacerbates some of the lung alterations induced by DEP in mice, suggesting that VAChT-KD animals are more vulnerable to the effects of DEP in the lung.


Asunto(s)
Pulmón/efectos de los fármacos , Emisiones de Vehículos/toxicidad , Proteínas de Transporte Vesicular de Acetilcolina/genética , Animales , Líquido del Lavado Bronquioalveolar/citología , Citocinas/genética , Citocinas/metabolismo , Pulmón/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones , Tejido Parenquimatoso/efectos de los fármacos , Tejido Parenquimatoso/metabolismo , Neumonía/inducido químicamente , Neumonía/diagnóstico , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
4.
FASEB J ; 31(1): 320-332, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27729414

RESUMEN

Nicotinic α-7 acetylcholine receptor (nAChRα7) is a critical regulator of cholinergic anti-inflammatory actions in several diseases, including acute respiratory distress syndrome (ARDS). Given the potential importance of α7nAChR as a therapeutic target, we evaluated whether PNU-282987, an α7nAChR agonist, is effective in protecting the lung against inflammation. We performed intratracheal instillation of LPS to generate acute lung injury (ALI) in C57BL/6 mice. PNU-282987 treatment, either before or after ALI induction, reduced neutrophil recruitment and IL-1ß, TNF-α, IL-6, keratinocyte chemoattractant (KC), and IL-10 cytokine levels in the bronchoalveolar lavage fluid (P < 0.05). In addition, lung NF-κB phosphorylation decreased, along with collagen fiber deposition and the number of matrix metalloproteinase-9+ and -2+ cells, whereas the number of tissue inhibitor of metalloproteinase-1+ cells increased (P < 0.05). PNU-282987 treatment also reduced lung mRNA levels and the frequency of M1 macrophages, whereas cells expressing the M2-related markers CD206 and IL-10 increased, suggesting changes in the macrophage profile. Finally, PNU-282987 improved lung function in LPS-treated animals. The collective results suggest that PNU-282987, an agonist of α7nAChR, reduces LPS-induced experimental ALI, thus supporting the notion that drugs that act on α7nAChRs should be explored for ARDS treatment in humans.-Pinheiro, N. M., Santana, F. P. R., Almeida, R. R., Guerreiro, M., Martins, M. A., Caperuto, L. C., Câmara, N. O. S., Wensing, L. A., Prado, V. F., Tibério, I. F. L. C., Prado, M. A. M., Prado, C. M. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile.


Asunto(s)
Lesión Pulmonar Aguda/prevención & control , Benzamidas/uso terapéutico , Compuestos Bicíclicos con Puentes/uso terapéutico , Lipopolisacáridos/toxicidad , Macrófagos/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Animales , Líquido del Lavado Bronquioalveolar , Citocinas/genética , Citocinas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Inflamación/metabolismo , Masculino , Ratones , ARN/genética , ARN/metabolismo
5.
Am J Physiol Lung Cell Mol Physiol ; 312(2): L217-L230, 2017 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881407

RESUMEN

Sakuranetin is the main isolate flavonoid from Baccharis retusa (Asteraceae) leaves and exhibits anti-inflammatory and antioxidative activities. Acute respiratory distress syndrome is an acute failure of the respiratory system for which effective treatment is urgently necessary. This study investigated the preventive and therapeutic effects of sakuranetin on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. Animals were treated with intranasal sakuranetin 30 min before or 6 h after instillation of LPS. Twenty-four hours after ALI was induced, lung function, inflammation, macrophages population markers, collagen fiber deposition, the extent of oxidative stress, and the expression of matrix metalloprotease-9 (MMP-9), tissue inhibitor of MMP-9 (TIMP-1) and NF-κB were evaluated. The animals began to show lung alterations 6 h after LPS instillation, and these changes persisted until 24 h after LPS administration. Preventive and therapeutic treatment with sakuranetin reduced the neutrophils in the peripheral blood and in the bronchial alveolar lavage. Sakuranetin treatment also reduced macrophage populations, particularly that of M1-like macrophages. In addition, sakurnaetin treatment reduced keratinocyte-derived chemokines (IL-8 homolog) and NF-κB levels, collagen fiber formation, MMM-9 and TIMP-1-positive cells, and oxidative stress in lung tissues compared with LPS animals treated with vehicle. Finally, sakuranetin treatment also reduced total protein, and the levels of TNF-α and IL-1ß in the lung. This study shows that sakuranetin prevented and reduced pulmonary inflammation induced by LPS. Because sakuranetin modulates oxidative stress, the NF-κB pathway, and lung function, it may constitute a novel therapeutic candidate to prevent and treat ALI.


Asunto(s)
Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Flavonoides/uso terapéutico , Lesión Pulmonar Aguda/sangre , Lesión Pulmonar Aguda/complicaciones , Animales , Biomarcadores/metabolismo , Polaridad Celular/efectos de los fármacos , Colágeno/metabolismo , Adaptabilidad/efectos de los fármacos , Citocinas/metabolismo , Flavonoides/química , Flavonoides/farmacología , Mediadores de Inflamación/metabolismo , Leucocitos/efectos de los fármacos , Lipopolisacáridos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Masculino , Metaloproteinasa 9 de la Matriz/metabolismo , Ratones Endogámicos BALB C , Modelos Biológicos , Estrés Oxidativo/efectos de los fármacos , Fosforilación/efectos de los fármacos , Neumonía/sangre , Neumonía/complicaciones , Neumonía/tratamiento farmacológico , Neumonía/fisiopatología , Subunidades de Proteína/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Inhibidor Tisular de Metaloproteinasa-1/metabolismo , Factor de Transcripción ReIA/metabolismo
6.
Mediators Inflamm ; 2016: 2348968, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27445433

RESUMEN

Pulmonary inflammation is a hallmark of many respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and acute respiratory syndrome distress (ARDS). Most of these diseases are treated with anti-inflammatory therapy in order to prevent or to reduce the pulmonary inflammation. Herbal medicine-derived natural products have been used in folk medicine and scientific studies to evaluate the value of these compounds have grown in recent years. Many substances derived from plants have the biological effects in vitro and in vivo, such as flavonoids, alkaloids, and terpenoids. Among the biological activities of natural products derived from plants can be pointed out the anti-inflammatory, antiviral, antiplatelet, antitumor anti-allergic activities, and antioxidant. Although many reports have evaluated the effects of these compounds in experimental models, studies evaluating clinical trials are scarce in the literature. This review aims to emphasize the effects of these different natural products in pulmonary diseases in experimental models and in humans and pointing out some possible mechanisms of action.


Asunto(s)
Productos Biológicos/uso terapéutico , Medicina de Hierbas/métodos , Inflamación/tratamiento farmacológico , Enfermedades Pulmonares/tratamiento farmacológico , Animales , Humanos , Inflamación/inmunología , Enfermedades Pulmonares/inmunología
7.
Molecules ; 21(10)2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27775634

RESUMEN

BACKGROUND: Chronic obstructive pulmonary disease (COPD) is characterized by irreversible airflow obstruction and inflammation. Natural products, such as monoterpenes, displayed anti-inflammatory and anti-oxidant activities and can be used as a source of new compounds to COPD treatment. Our aim was to evaluate, in an elastase-induced pulmonary emphysema in mice, the effects of and underlying mechanisms of three related natural monoterpenes (p-cymene, carvacrol and thymol) isolated from essential oil from leaves Lippia sidoides Cham. (Verbenaceae). METHODS: Mices received porcine pancreatic elastase (PPE) and were treated with p-cymene, carvacrol, thymol or vehicle 30 min later and again on 7th, 14th and 28th days. Lung inflammatory profile and histological sections were evaluated. RESULTS: In the elastase-instilled animals, the tested monoterpenes reduced alveolar enlargement, macrophages and the levels of IL-1ß, IL-6, IL-8 and IL-17 in bronchoalveolar lavage fluid (BALF), and collagen fibers, MMP-9 and p-65-NF-κB-positive cells in lung parenchyma (p < 0.05). All treatments attenuated levels of 8-iso-PGF2α but only thymol was able to reduced exhaled nitric oxide (p < 0.05). CONCLUSION: Monoterpenes p-cymene, carvacrol and thymol reduced lung emphysema and inflammation in mice. No significant differences among the three monoterpenes treatments were found, suggesting that the presence of hydroxyl group in the molecular structure of thymol and carvacrol do not play a central role in the anti-inflammatory effects.


Asunto(s)
Enfisema/tratamiento farmacológico , Interleucinas/metabolismo , Lippia/química , Monoterpenos/administración & dosificación , Elastasa Pancreática/efectos adversos , Animales , Líquido del Lavado Bronquioalveolar/inmunología , Cimenos , Modelos Animales de Enfermedad , Enfisema/inducido químicamente , Enfisema/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Macrófagos Alveolares/efectos de los fármacos , Ratones , Monoterpenos/química , Monoterpenos/aislamiento & purificación , Monoterpenos/farmacología , Aceites Volátiles/química , Hojas de la Planta/química , Timol/administración & dosificación , Timol/química , Timol/aislamiento & purificación , Timol/farmacología
8.
Respir Res ; 16: 79, 2015 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-26122092

RESUMEN

BACKGROUND: Pulmonary emphysema is characterized by irreversible airflow obstruction, inflammation, oxidative stress imbalance and lung remodeling, resulting in reduced lung function and a lower quality of life. Flavonoids are plant compounds with potential anti-inflammatory and antioxidant effects that have been used in folk medicine. Our aim was to determine whether treatment with sakuranetin, a flavonoid extracted from the aerial parts of Baccharis retusa, interferes with the development of lung emphysema. METHODS: Intranasal saline or elastase was administered to mice; the animals were then treated with sakuranetin or vehicle 2 h later and again on days 7, 14 and 28. We evaluated lung function and the inflammatory profile in bronchoalveolar lavage fluid (BALF). The lungs were removed to evaluate alveolar enlargement, extracellular matrix fibers and the expression of MMP-9, MMP-12, TIMP-1, 8-iso-PGF-2α and p65-NF-κB in the fixed tissues as well as to evaluate cytokine levels and p65-NF-κB protein expression. RESULTS: In the elastase-treated animals, sakuranetin treatment reduced the alveolar enlargement, collagen and elastic fiber deposition and the number of MMP-9- and MMP-12-positive cells but increased TIMP-1 expression. In addition, sakuranetin treatment decreased the inflammation and the levels of TNF-α, IL-1ß and M-CSF in the BALF as well as the levels of NF-κB and 8-iso-PGF-2α in the lungs of the elastase-treated animals. However, this treatment did not affect the changes in lung function. CONCLUSION: These data emphasize the importance of oxidative stress and metalloproteinase imbalance in the development of emphysema and suggest that sakuranetin is a potent candidate that should be further investigated as an emphysema treatment. This compound may be useful for counteracting lung remodeling and oxidative stress and thus attenuating the development of emphysema.


Asunto(s)
Baccharis , Flavonoides/uso terapéutico , Metaloproteinasas de la Matriz/biosíntesis , FN-kappa B/metabolismo , Estrés Oxidativo/fisiología , Enfisema Pulmonar/metabolismo , Animales , Flavanonas/aislamiento & purificación , Flavanonas/uso terapéutico , Flavonoides/aislamiento & purificación , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Elastasa Pancreática/toxicidad , Componentes Aéreos de las Plantas , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/uso terapéutico , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/prevención & control , Porcinos
9.
Molecules ; 19(3): 3570-95, 2014 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-24662074

RESUMEN

Flavonoids are polyphenolic compounds classified into flavonols, flavones, flavanones, isoflavones, catechins, anthocyanidins, and chalcones according to their chemical structures. They are abundantly found in Nature and over 8,000 flavonoids have from different sources, mainly plant materials, have been described. Recently reports have shown the valuable effects of flavonoids as antiviral, anti-allergic, antiplatelet, antitumor, antioxidant, and anti-inflammatory agents and interest in these compounds has been increasing since they can be helpful to human health. Several mechanisms of action are involved in the biological properties of flavonoids such as free radical scavenging, transition metal ion chelation, activation of survival genes and signaling pathways, regulation of mitochondrial function and modulation of inflammatory responses. The anti-inflammatory effects of flavonoids have been described in a number of studies in the literature, but not frequently associated to respiratory disease. Thus, this review aims to discuss the effects of different flavonoids in the control of lung inflammation in some disorders such as asthma, lung emphysema and acute respiratory distress syndrome and the possible mechanisms of action, as well as establish some structure-activity relationships between this biological potential and chemical profile of these compounds.


Asunto(s)
Flavonoides/química , Flavonoides/farmacología , Enfermedades Pulmonares/metabolismo , Relación Estructura-Actividad , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antioxidantes/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Flavonoides/uso terapéutico , Humanos , Enfermedades Pulmonares/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos
10.
Inflammation ; 47(3): 958-974, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38227123

RESUMEN

Pulmonary emphysema is a primary component of chronic obstructive pulmonary disease (COPD), a life-threatening disorder characterized by lung inflammation and restricted airflow, primarily resulting from the destruction of small airways and alveolar walls. Cumulative evidence suggests that nicotinic receptors, especially the α7 subtype (α7nAChR), is required for anti-inflammatory cholinergic responses. We postulated that the stimulation of α7nAChR could offer therapeutic benefits in the context of pulmonary emphysema. To investigate this, we assessed the potential protective effects of PNU-282987, a selective α7nAChR agonist, using an experimental emphysema model. Male mice (C57BL/6) were submitted to a nasal instillation of porcine pancreatic elastase (PPE) (50 µl, 0.667 IU) to induce emphysema. Treatment with PNU-282987 (2.0 mg/kg, ip) was performed pre and post-emphysema induction by measuring anti-inflammatory effects (inflammatory cells, cytokines) as well as anti-remodeling and anti-oxidant effects. Elastase-induced emphysema led to an increase in the number of α7nAChR-positive cells in the lungs. Notably, both groups treated with PNU-282987 (prior to and following emphysema induction) exhibited a significant decrease in the number of α7nAChR-positive cells. Furthermore, both groups treated with PNU-282987 demonstrated decreased levels of macrophages, IL-6, IL-1ß, collagen, and elastic fiber deposition. Additionally, both groups exhibited reduced STAT3 phosphorylation and lower levels of SOCS3. Of particular note, in the post-treated group, PNU-282987 successfully attenuated alveolar enlargement, decreased IL-17 and TNF-α levels, and reduced the recruitment of polymorphonuclear cells to the lung parenchyma. Significantly, it is worth noting that MLA, an antagonist of α7nAChR, counteracted the protective effects of PNU-282987 in relation to certain crucial inflammatory parameters. In summary, these findings unequivocally demonstrate the protective abilities of α7nAChR against elastase-induced emphysema, strongly supporting α7nAChR as a pivotal therapeutic target for ameliorating pulmonary emphysema.


Asunto(s)
Benzamidas , Compuestos Bicíclicos con Puentes , Ratones Endogámicos C57BL , Agonistas Nicotínicos , Elastasa Pancreática , Enfisema Pulmonar , Receptor Nicotínico de Acetilcolina alfa 7 , Animales , Receptor Nicotínico de Acetilcolina alfa 7/agonistas , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Enfisema Pulmonar/tratamiento farmacológico , Enfisema Pulmonar/inducido químicamente , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/prevención & control , Ratones , Benzamidas/farmacología , Benzamidas/uso terapéutico , Masculino , Compuestos Bicíclicos con Puentes/farmacología , Compuestos Bicíclicos con Puentes/uso terapéutico , Agonistas Nicotínicos/farmacología , Agonistas Nicotínicos/uso terapéutico , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico
11.
BMC Pulm Med ; 13: 52, 2013 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-23947680

RESUMEN

BACKGROUND: The importance of the lung parenchyma in the pathophysiology of asthma has previously been demonstrated. Considering that nitric oxide synthases (NOS) and arginases compete for the same substrate, it is worthwhile to elucidate the effects of complex NOS-arginase dysfunction in the pathophysiology of asthma, particularly, related to distal lung tissue. We evaluated the effects of arginase and iNOS inhibition on distal lung mechanics and oxidative stress pathway activation in a model of chronic pulmonary allergic inflammation in guinea pigs. METHODS: Guinea pigs were exposed to repeated ovalbumin inhalations (twice a week for 4 weeks). The animals received 1400 W (an iNOS-specific inhibitor) for 4 days beginning at the last inhalation. Afterwards, the animals were anesthetized and exsanguinated; then, a slice of the distal lung was evaluated by oscillatory mechanics, and an arginase inhibitor (nor-NOHA) or vehicle was infused in a Krebs solution bath. Tissue resistance (Rt) and elastance (Et) were assessed before and after ovalbumin challenge (0.1%), and lung strips were submitted to histopathological studies. RESULTS: Ovalbumin-exposed animals presented an increase in the maximal Rt and Et responses after antigen challenge (p<0.001), in the number of iNOS positive cells (p<0.001) and in the expression of arginase 2, 8-isoprostane and NF-kB (p<0.001) in distal lung tissue. The 1400 W administration reduced all these responses (p<0.001) in alveolar septa. Ovalbumin-exposed animals that received nor-NOHA had a reduction of Rt, Et after antigen challenge, iNOS positive cells and 8-isoprostane and NF-kB (p<0.001) in lung tissue. The activity of arginase 2 was reduced only in the groups treated with nor-NOHA (p <0.05). There was a reduction of 8-isoprostane expression in OVA-NOR-W compared to OVA-NOR (p<0.001). CONCLUSIONS: In this experimental model, increased arginase content and iNOS-positive cells were associated with the constriction of distal lung parenchyma. This functional alteration may be due to a high expression of 8-isoprostane, which had a procontractile effect. The mechanism involved in this response is likely related to the modulation of NF-kB expression, which contributed to the activation of the arginase and iNOS pathways. The association of both inhibitors potentiated the reduction of 8-isoprostane expression in this animal model.


Asunto(s)
Arginasa/antagonistas & inhibidores , Hipersensibilidad/fisiopatología , Pulmón/fisiopatología , Estrés Oxidativo/fisiología , Neumonía/fisiopatología , Mecánica Respiratoria/fisiología , Administración por Inhalación , Animales , Arginasa/metabolismo , Enfermedad Crónica , Dinoprost/metabolismo , Modelos Animales de Enfermedad , Cobayas , Hipersensibilidad/metabolismo , Hipersensibilidad/patología , Pulmón/metabolismo , Pulmón/patología , Masculino , FN-kappa B/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Ovalbúmina/efectos adversos , Neumonía/inducido químicamente , Neumonía/metabolismo
12.
Neuroimmunomodulation ; 19(1): 1-9, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22067616

RESUMEN

BACKGROUND/AIMS: Epidemiological studies suggest that stress has an impact on asthmatic exacerbations. We evaluated if repeated stress, induced by forced swimming, modulates lung mechanics, distal airway inflammation and extracellular matrix remodeling in guinea pigs with chronic allergic inflammation. METHODS: Guinea pigs were submitted to 7 ovalbumin or saline aerosols (1-5 mg/ml during 4 weeks; OVA and SAL groups). Twenty-four hours after the 4th inhalation, guinea pigs were submitted to the stress protocol 5 times a week during 2 weeks (SAL-S and OVA-S groups). Seventy-two hours after the 7th inhalation, guinea pigs were anesthetized and mechanically ventilated. Resistance and elastance of the respiratory system were obtained at baseline and after ovalbumin challenge. Lungs were removed, and inflammatory and extracellular matrix remodeling of distal airways was assessed by morphometry. Adrenals were removed and weighed. RESULTS: The relative adrenal weight was greater in stressed guinea pigs compared to non-stressed animals (p < 0.001). Repeated stress increased the percent elastance of the respiratory system after antigen challenge and eosinophils and lymphocytes in the OVA-S compared to the OVA group (p < 0.001, p = 0.003 and p < 0.001). Neither collagen nor elastic fiber contents were modified by stress in sensitized animals. CONCLUSIONS: In this animal model, repeated stress amplified bronchoconstriction and inflammatory response in distal airways without interfering with extracellular matrix remodeling.


Asunto(s)
Hipersensibilidad/etiología , Inflamación/complicaciones , Trastornos Respiratorios/complicaciones , Trastornos Respiratorios/patología , Estrés Psicológico/patología , Estrés Psicológico/fisiopatología , Administración por Inhalación , Glándulas Suprarrenales/patología , Análisis de Varianza , Animales , Modelos Animales de Enfermedad , Matriz Extracelular/metabolismo , Cobayas , Inflamación/inducido químicamente , Masculino , Infiltración Neutrófila , Tamaño de los Órganos , Ovalbúmina/efectos adversos , Estimulación Física/efectos adversos , Trastornos Respiratorios/inducido químicamente , Natación/psicología
13.
Neuroimmunomodulation ; 19(3): 158-70, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22262048

RESUMEN

Mechanisms involved in stress-induced asthmatic alterations have been poorly characterised. We assessed whether inducible nitric oxide synthase (iNOS) inhibition modulates the stress-amplified lung parenchyma responsiveness, oxidative stress and extracellular matrix remodelling that was previously increased by chronic lung inflammation. Guinea pigs were subjected to 7 exposures to ovalbumin (1-5 mg/ml) or saline (OVA and SAL groups) over 4 weeks. To induce behavioural stress, animals were subjected to a forced swimming protocol (5 times/week, over 2 weeks; SAL-Stress and OVA-Stress groups) 24 h after the 4th inhalation. 1400W (iNOS-specific inhibitor) was administered intraperitoneally in the last 4 days of the protocol (SAL-1400W, OVA-1400W, SAL-Stress+1400W and OVA-Stress+1400W groups). Seventy-two hours after the last inhalation, animals were anaesthetised and exsanguinated, and adrenal glands were removed. Lung tissue resistance and elastance were evaluated by oscillatory mechanics and submitted for histopathological evaluation. Stressed animals had higher adrenal weights compared to non-stressed groups, which were reduced by 1400W treatment. Behavioural stress in sensitised animals amplified the resistance and elastance responses after antigen challenge, numbers of eosinophils and iNOS+ cells, actin content and 8-iso-PGF2α density in the distal lung compared to the OVA group. 1400W treatment in ovalbumin-exposed and stressed animals reduced lung mechanics, iNOS+ cell numbers and 8-iso-PGF2α density compared to sensitised and stressed animals that received vehicle treatment. We concluded that stress amplifies the distal lung constriction, eosinophilic inflammation, iNOS expression, actin content and oxidative stress previously induced by chronic lung inflammation. iNOS-derived NO contributes to stress-augmented lung tissue functional alterations in this animal model and is at least partially due to activation of the oxidative stress pathway.


Asunto(s)
Óxido Nítrico Sintasa de Tipo II/administración & dosificación , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/fisiología , Estrés Oxidativo , Neumonía/enzimología , Estrés Fisiológico , Actinas/metabolismo , Glándulas Suprarrenales/patología , Animales , Colágeno , Dinoprost/análogos & derivados , Dinoprost/metabolismo , Eosinófilos/patología , Cobayas , Hidrocortisona/sangre , Pulmón/enzimología , Pulmón/inmunología , Pulmón/patología , Masculino , Tamaño de los Órganos , Neumonía/patología , Neumonía/fisiopatología
14.
Exp Lung Res ; 38(7): 344-54, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22809390

RESUMEN

BACKGROUND: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. OBJECTIVE: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. METHODS: The GP were exposed to ovalbumin or saline aerosols (2×/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5×/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. RESULTS: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-γ, iNOS, 8-iso-PGF2α, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2α, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. CONCLUSION & CLINICAL RELEVANCE: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2α levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.


Asunto(s)
Pulmón/fisiopatología , Estrés Oxidativo/fisiología , Neumonía/fisiopatología , Estrés Psicológico/fisiopatología , Actinas/análisis , Glándulas Suprarrenales/anatomía & histología , Resistencia de las Vías Respiratorias/fisiología , Animales , Catecolaminas/sangre , Enfermedad Crónica , Citocinas/análisis , Dinoprost/análisis , Eosinófilos/fisiología , Cobayas , Hidrocortisona/sangre , Pulmón/patología , Masculino , Óxido Nítrico Sintasa de Tipo II/análisis , Tamaño de los Órganos , Neumonía/inducido químicamente , Neumonía/psicología , Natación/fisiología , Natación/psicología
15.
Sci Rep ; 11(1): 15918, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34354132

RESUMEN

Acetylcholine (ACh), the neurotransmitter of the cholinergic system, regulates inflammation in several diseases including pulmonary diseases. ACh is also involved in a non-neuronal mechanism that modulates the innate immune response. Because inflammation and release of pro-inflammatory cytokines are involved in pulmonary emphysema, we hypothesized that vesicular acetylcholine transport protein (VAChT) deficiency, which leads to reduction in ACh release, can modulate lung inflammation in an experimental model of emphysema. Mice with genetical reduced expression of VAChT (VAChT KDHOM 70%) and wild-type mice (WT) received nasal instillation of 50 uL of porcine pancreatic elastase (PPE) or saline on day 0. Twenty-eight days after, animals were evaluated. Elastase instilled VAChT KDHOM mice presented an increase in macrophages, lymphocytes, and neutrophils in bronchoalveolar lavage fluid and MAC2-positive macrophages in lung tissue and peribronchovascular area that was comparable to that observed in WT mice. Conversely, elastase instilled VAChT KDHOM mice showed significantly larger number of NF-κB-positive cells and isoprostane staining in the peribronchovascular area when compared to elastase-instilled WT-mice. Moreover, elastase-instilled VAChT-deficient mice showed increased MCP-1 levels in the lungs. Other cytokines, extracellular matrix remodeling, alveolar enlargement, and lung function were not worse in elastase-instilled VAChT deficiency than in elastase-instilled WT-controls. These data suggest that decreased VAChT expression may contribute to the pathogenesis of emphysema, at least in part, through NF-κB activation, MCP-1, and oxidative stress pathways. This study highlights novel pathways involved in lung inflammation that may contribute to the development of chronic obstrutive lung disease (COPD) in cholinergic deficient individuals such as Alzheimer's disease patients.


Asunto(s)
Acetilcolina/deficiencia , Enfisema/inmunología , Neumonía/etiología , Acetilcolina/metabolismo , Animales , Líquido del Lavado Bronquioalveolar/citología , Citocinas/metabolismo , Modelos Animales de Enfermedad , Enfisema/metabolismo , Inflamación/patología , Pulmón/patología , Macrófagos/metabolismo , Masculino , Ratones , FN-kappa B/metabolismo , Neutrófilos/metabolismo , Elastasa Pancreática/efectos adversos , Elastasa Pancreática/farmacología , Neumonía/fisiopatología , Enfisema Pulmonar/metabolismo , Transducción de Señal , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Proteínas de Transporte Vesicular de Acetilcolina/genética , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo
16.
Inflammation ; 44(4): 1553-1564, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33715111

RESUMEN

Acute lung injury induced by intestinal ischemia/reperfusion (I/R) is a relevant clinical condition. Acetylcholine (ACh) and the α7 nicotinic ACh receptor (nAChRα-7) are involved in the control of inflammation. Mice with reduced levels of the vesicular ACh transporter (VAChT), a protein responsible for controlling ACh release, were used to test the involvement of cholinergic signaling in lung inflammation due to intestinal I/R. Female mice with reduced levels of VAChT (VAChT-KDHOM) or wild-type littermate controls (WT) were submitted to intestinal I/R followed by 2 h of reperfusion. Mortality, vascular permeability, and recruitment of inflammatory cells into the lung were investigated. Parts of mice were submitted to ovariectomy (OVx) to study the effect of sex hormones or treated with PNU-282,987 (nAChRα-7 agonist). A total of 43.4% of VAChT-KDHOM-I/R mice died in the reperfusion period compared to 5.2% of WT I/R mice. The I/R increased lung inflammation in both genotypes. In VAChT-KDHOM mice, I/R increased vascular permeability and decreased the release of cytokines in the lung compared to WT I/R mice. Ovariectomy reduced lung inflammation and permeability compared to non-OVx, but it did not avoid mortality in VAChT-KDHOM-I/R mice. PNU treatment reduced lung permeability, increased the release of proinflammatory cytokines and the myeloperoxidase activity in the lungs, and prevented the increased mortality observed in VAChT-KDHOM mice. Cholinergic signaling is an important component of the lung protector response against intestinal I/R injury. Decreased cholinergic signaling seems to increase pulmonary edema and dysfunctional cytokine release that increased mortality, which can be prevented by increasing activation of nAChRα-7.


Asunto(s)
Intestinos/metabolismo , Edema Pulmonar/metabolismo , Edema Pulmonar/mortalidad , Daño por Reperfusión/metabolismo , Daño por Reperfusión/mortalidad , Proteínas de Transporte Vesicular de Acetilcolina/metabolismo , Animales , Femenino , Mediadores de Inflamación/metabolismo , Intestinos/irrigación sanguínea , Ratones , Ratones Transgénicos , Ovariectomía/efectos adversos , Ovariectomía/mortalidad
17.
Cells ; 10(7)2021 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206428

RESUMEN

Th17/Treg imbalance plays a pivotal role in COPD development and progression. We aimed to assess Th17/Treg-related intracellular signaling at different COPD stages in local and systemic responses. Lung tissue and/or peripheral blood samples were collected and divided into non-obstructed (NOS), COPD stages I and II, and COPD stages III and IV groups. Gene expression of STAT3 and -5, RORγt, Foxp3, interleukin (IL)-6, -17, -10, and TGF-ß was assessed by RT-qPCR. IL-6, -17, -10, and TGF-ß levels were determined by ELISA. We observed increased STAT3, RORγt, Foxp3, IL-6, and TGF-ß gene expression and IL-6 levels in the lungs of COPD I and II patients compared to those of NOS patients. Regarding the systemic response, we observed increased STAT3, RORγt, IL-6, and TGF-ß gene expression in the COPD III and IV group and increased IL-6 levels in the COPD I and II group. STAT5 was increased in COPD III and IV patients, although there was a decrease in Foxp3 expression and IL-10 levels in the COPD I and II and COPD III and IV groups, respectively. We demonstrated that an increase in Th17 intracellular signaling in the lungs precedes this increase in the systemic response, whereas Treg intracellular signaling varies between the compartments analyzed in different COPD stages.


Asunto(s)
Espacio Intracelular/metabolismo , Enfermedad Pulmonar Obstructiva Crónica/inmunología , Transducción de Señal , Linfocitos T Reguladores/inmunología , Células Th17/inmunología , Anciano , Citocinas/metabolismo , Femenino , Humanos , Pulmón/inmunología , Pulmón/patología , Masculino , Persona de Mediana Edad , Factores de Transcripción/metabolismo
19.
Ther Adv Respir Dis ; 14: 1753466620962665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33357114

RESUMEN

BACKGROUND AND AIMS: Expansion and morphological dysregulation of the bronchial vascular network occurs in asthmatic airways. Interleukin (IL) -17 and Rho-kinase (ROCK) are known to act in inflammation control and remodeling. Modulation of Rho-kinase proteins and IL-17 may be a promising approach for the treatment of asthma through the control of angiogenesis. Our objective was to analyze the effects of treatment with anti-IL17 and/or Rho-kinase inhibitor on vascular changes in mice with chronic allergic pulmonary inflammation. METHODS: Sixty-four BALB/c mice, with pulmonary inflammation induced by ovalbumin were treated with anti-IL17A (7.5/µg per dose, intraperitoneal) and/or Rho-kinase inhibitor (Y-27632-10 mg/kg, intranasal), 1 h before each ovalbumin challenge (22, 24, 26, and 28/days). Control animals were made to inhale saline. At the end of the protocol, lungs were removed, and morphometric analysis was performed to quantify vascular inflammatory, remodeling, and oxidative stress responses. RESULTS: Anti-IL17 or Rho-kinase inhibitor reduced the number of CD4+, CD8+, dendritic cells, IL-4, IL-5, IL-6, IL-10, IL-13, IL-17, Rho-kinase 1 and 2, transforming growth factor (TGF-ß), vascular endothelial growth factor (VEGF), nuclear factor (NF)-KappaB, iNOS, metalloproteinase (MMP)-9, MMP-12, metalloproteinase inhibitor-1 (TIMP-1), FOXP-3, signal transducer and activator of transcription 1 (STAT1) and phospho-STAT1-positive cells, and actin, endothelin-1, isoprostane, biglycan, decorin, fibronectin and the collagen fibers volume fraction compared with the ovalbumin group (p < 0.05). The combination treatment, when compared with anti-IL17, resulted in potentiation of decrease in the number of IL1ß- and dendritic cells-positive cells. When we compared the OVA-RHO inhibitor-anti-IL17 with OVA-RHO inhibitor we found a reduction in the number of CD8+ and IL-17, TGF-ß, and phospho-STAT1-positive cells and endothelin-1 in the vessels (p < 0.05). There was an attenuation in the number of ROCK 2-positive cells in the group with the combined treatment when compared with anti-IL17 or Rho-kinase inhibitor-treated groups (p < 0.05). CONCLUSION: We observed no difference in angiogenesis after treatment with Rho-kinase inhibitor and anti-IL17. Although the treatments did not show differences in angiogenesis, they showed differences in the markers involved in the angiogenesis process contributing to inflammation control and vascular remodeling.The reviews of this paper are available via the supplemental material section.


Asunto(s)
Asma/fisiopatología , Inhibidores Enzimáticos/farmacología , Interleucina-17/antagonistas & inhibidores , Neumonía/fisiopatología , Remodelación Vascular/efectos de los fármacos , Quinasas Asociadas a rho/antagonistas & inhibidores , Amidas/farmacología , Animales , Biomarcadores/metabolismo , Citocinas/metabolismo , Isoprostanos/metabolismo , Ratones Endogámicos BALB C , Óxido Nítrico Sintasa/metabolismo , Piridinas/farmacología , Remodelación Vascular/fisiología , Quinasas Asociadas a rho/metabolismo
20.
Eur J Pharmacol ; 882: 173239, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32619677

RESUMEN

The cholinergic anti-inflammatory pathway has been shown to regulate lung inflammation and cytokine release in acute models of inflammation, mainly via α7 nicotinic receptor (α7nAChR). We aimed to evaluate the role of endogenous acetylcholine in chronic allergic airway inflammation in mice and the effects of therapeutic nAChR stimulation in this model. We first evaluated lung inflammation and remodeling on knock-down mice with 65% of vesicular acetylcholine transport (VAChT) gene reduction (KDVAChT) and wild-type(WT) controls that were subcutaneously sensitized and then inhaled with ovalbumin(OVA). We then evaluated the effects of PNU-282987(0.5-to-2mg/kg),(α7nAChR agonist) treatment in BALB/c male mice intraperitoneal sensitized and then inhaled with OVA. Another OVA-sensitized-group was treated with PNU-282987 plus Methyllycaconitine (MLA,1 mg/kg, α7nAChR antagonist) to confirm that the effects observed by PNU were due to α7nAChR. We showed that KDVAChT-OVA mice exhibit exacerbated airway inflammation when compared to WT-OVA mice. In BALB/c, PNU-282987 treatment reduced the number of eosinophils in the blood, BAL fluid, and around airways, and also decreased pulmonary levels of IL-4,IL-13,IL-17, and IgE in the serum of OVA-exposed mice. MLA pre-treatment abolished all the effects of PNU-282987. Additionally, we showed that PNU-282987 inhibited STAT3-phosphorylation and reduced SOCS3 expression in the lung. These data indicate that endogenous cholinergic tone is important to control allergic airway inflammation in a murine model. Moreover, α7nAChR is involved in the control of eosinophilic inflammation and airway remodeling, possibly via inhibition of STAT3/SOCS3 pathways. Together these data suggest that cholinergic anti-inflammatory system mainly α7nAChR should be further considered as a therapeutic target in asthma.


Asunto(s)
Asma/inmunología , Proteínas de Transporte Vesicular de Acetilcolina/deficiencia , Receptor Nicotínico de Acetilcolina alfa 7/inmunología , Remodelación de las Vías Aéreas (Respiratorias) , Alérgenos , Animales , Asma/etiología , Benzamidas/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Líquido del Lavado Bronquioalveolar/citología , Líquido del Lavado Bronquioalveolar/inmunología , Enfermedad Crónica , Citocinas/inmunología , Modelos Animales de Enfermedad , Inflamación/etiología , Inflamación/inmunología , Recuento de Leucocitos , Pulmón/efectos de los fármacos , Pulmón/inmunología , Pulmón/patología , Masculino , Ratones Endogámicos BALB C , Ratones Noqueados , Ovalbúmina , Factor de Transcripción STAT3/antagonistas & inhibidores , Proteína 3 Supresora de la Señalización de Citocinas/antagonistas & inhibidores , Proteínas de Transporte Vesicular de Acetilcolina/genética , Receptor Nicotínico de Acetilcolina alfa 7/agonistas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda