Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Biol Chem ; 299(9): 105088, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37495107

RESUMEN

S-acylation is a reversible posttranslational protein modification consisting of attachment of a fatty acid to a cysteine via a thioester bond. Research over the last few years has shown that a variety of different fatty acids, such as palmitic acid (C16:0), stearate (C18:0), or oleate (C18:1), are used in cells to S-acylate proteins. We recently showed that GNAI proteins can be acylated on a single residue, Cys3, with either C16:0 or C18:1, and that the relative proportion of acylation with these fatty acids depends on the level of the respective fatty acid in the cell's environment. This has functional consequences for GNAI proteins, with the identity of the acylating fatty acid affecting the subcellular localization of GNAIs. Unclear is whether this competitive acylation is specific to GNAI proteins or a more general phenomenon in the proteome. We perform here a proteome screen to identify proteins acylated with different fatty acids. We identify 218 proteins acylated with C16:0 and 308 proteins acylated with C18-lipids, thereby uncovering novel targets of acylation. We find that most proteins that can be acylated by C16:0 can also be acylated with C18-fatty acids. For proteins with more than one acylation site, we find that this competitive acylation occurs on each individual cysteine residue. This raises the possibility that the function of many different proteins can be regulated by the lipid environment via differential S-acylation.


Asunto(s)
Cisteína , Ácido Palmítico , Proteoma , Ácidos Esteáricos , Acilación , Cisteína/metabolismo , Ácido Palmítico/metabolismo , Proteoma/metabolismo , Células HEK293 , Células HeLa , Humanos , Ácidos Esteáricos/metabolismo
2.
NAR Genom Bioinform ; 6(3): lqae091, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39157585

RESUMEN

The discovery of functional long non-coding RNAs (lncRNAs) changed their initial concept as transcriptional noise. LncRNAs have been identified as regulators of multiple biological processes, including chromatin structure, gene expression, splicing, mRNA degradation, and translation. However, functional studies of lncRNAs are hindered by the usual lack of phenotypes upon deletion or inhibition. Here, we used Drosophila imaginal discs as a model system to identify lncRNAs involved in development and regeneration. We examined a subset of lncRNAs expressed in the wing, leg, and eye disc development. Additionally, we analyzed transcriptomic data from regenerating wing discs to profile the expression pattern of lncRNAs during tissue repair. We focused on the lncRNA CR40469, which is upregulated during regeneration. We generated CR40469 mutant flies that developed normally but showed impaired wing regeneration upon cell death induction. The ability of these mutants to regenerate was restored by the ectopic expression of CR40469. Furthermore, we found that the lncRNA CR34335 has a high degree of sequence similarity with CR40469 and can partially compensate for its function during regeneration in the absence of CR40469. Our findings point to a potential role of the lncRNA CR40469 in trans during the response to damage in the wing imaginal disc.

3.
Dev Biol ; 367(2): 187-96, 2012 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-22609549

RESUMEN

The insulin/IGF signaling (IIS) pathway is a potent inducer of cell proliferation in normal development and in cancer. The mechanism by which this occurs, however, is not completely understood. The Hippo signaling pathway regulates cell proliferation via the transcriptional co-activator Yorkie/YAP, however the signaling inputs regulating Hippo activity are not fully elucidated. Here we present evidence linking these two conserved, oncogenic pathways in Drosophila and in mammalian cells. We find that activation of IIS and of Yorkie signaling correlate positively in hepatocellular carcinoma. We show that IIS activates Yorkie in vivo, and that Yorkie plays an important role in the ability of IIS to drive cell proliferation. Interestingly, we also find the converse--that Yorkie signaling activates components of the insulin/TOR pathway. In sum, this crosstalk between IIS and Yorkie leads to coordinated regulation of these two oncogenic pathways.


Asunto(s)
Proteínas de Drosophila/metabolismo , Insulina/metabolismo , Proteínas Nucleares/metabolismo , Somatomedinas/metabolismo , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Animales Modificados Genéticamente , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Proteínas de Ciclo Celular , Proliferación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Ratones , Células 3T3 NIH , Proteína Oncogénica v-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal , Especificidad de la Especie , Serina-Treonina Quinasas TOR/metabolismo , Proteínas Señalizadoras YAP
4.
Proc Natl Acad Sci U S A ; 106(42): 17781-6, 2009 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-19815529

RESUMEN

AMP-activated protein kinase (AMPK) senses changes in the intracellular AMP/ATP ratio, switching off energy-consuming processes and switching on catabolic pathways in response to energy depletion. Here, we show that AMPK down-regulates rRNA synthesis under glucose restriction by phosphorylating the RNA polymerase I (Pol I)-associated transcription factor TIF-IA at a single serine residue (Ser-635). Phosphorylation by AMPK impairs the interaction of TIF-IA with the TBP-containing promoter selectivity factor SL1, thereby precluding the assembly of functional transcription initiation complexes. Mutation of Ser-635 compromises down-regulation of Pol I transcription in response to low energy supply, supporting that activation of AMPK adapts rRNA synthesis to nutrient availability and the cellular energy status.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , ARN Ribosómico/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Línea Celular , Metabolismo Energético , Glucosa/metabolismo , Humanos , Ratones , Modelos Biológicos , Células 3T3 NIH , Fosforilación , Proteínas del Complejo de Iniciación de Transcripción Pol1/antagonistas & inhibidores , Proteínas del Complejo de Iniciación de Transcripción Pol1/química , Proteínas del Complejo de Iniciación de Transcripción Pol1/genética , Proteínas del Complejo de Iniciación de Transcripción Pol1/metabolismo , ARN Polimerasa I/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Serina/química , Transcripción Genética
5.
Sci Rep ; 9(1): 19869, 2019 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-31882710

RESUMEN

We previously identified Drosophila REPTOR and REPTOR-BP as transcription factors downstream of mTORC1 that play an important role in regulating organismal metabolism. We study here the mammalian ortholog of REPTOR-BP, Crebl2. We find that Crebl2 mediates part of the transcriptional induction caused by mTORC1 inhibition. In C2C12 myoblasts, Crebl2 knockdown leads to elevated glucose uptake, elevated glycolysis as observed by lactate secretion, and elevated triglyceride biosynthesis. In Hepa1-6 hepatoma cells, Crebl2 knockdown also leads to elevated triglyceride levels. In sum, this works identifies Crebl2 as a regulator of cellular metabolism that can link nutrient sensing via mTORC1 to the metabolic response of cells.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hígado/metabolismo , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculos/metabolismo , Factor de Transcripción Activador 6/genética , Animales , Línea Celular , Proliferación Celular/fisiología , Femenino , Hepatocitos/metabolismo , Humanos , Masculino , Ratones , Ratones Noqueados , Mioblastos/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
6.
PLoS One ; 13(8): e0201609, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067821

RESUMEN

Lysine methylation is a reversible post-translational modification that affects protein function. Lysine methylation is involved in regulating the function of both histone and non-histone proteins, thereby influencing both cellular transcription and the activation of signaling pathways. To date, only a few lysine methyltransferases have been studied in depth. Here, we study the Drosophila homolog of the human lysine methyltransferase SETD3, CG32732/dSETD3. Since mammalian SETD3 is involved in cell proliferation, we tested the effect of dSETD3 on proliferation and growth of Drosophila S2 cells and whole flies. Knockdown of dSETD3 did not alter mTORC1 activity nor proliferation rate of S2 cells. Complete knock-out of dSETD3 in Drosophila flies did not affect their weight, growth rate or fertility. dSETD3 KO flies showed normal responses to starvation and hypoxia. In sum, we could not identify any clear phenotypes for SETD3 knockout animals, indicating that additional work will be required to elucidate the molecular and physiological function of this highly conserved enzyme.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/crecimiento & desarrollo , Técnicas de Inactivación de Genes , N-Metiltransferasa de Histona-Lisina/genética , Animales , Hipoxia de la Célula , Línea Celular , Proliferación Celular , Drosophila/citología , Drosophila/genética , Proteínas de Drosophila/metabolismo , Fertilidad , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Fenotipo
7.
Elife ; 72018 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-30526847

RESUMEN

Protein histidine methylation is a rare post-translational modification of unknown biochemical importance. In vertebrates, only a few methylhistidine-containing proteins have been reported, including ß-actin as an essential example. The evolutionary conserved methylation of ß-actin H73 is catalyzed by an as yet unknown histidine N-methyltransferase. We report here that the protein SETD3 is the actin-specific histidine N-methyltransferase. In vitro, recombinant rat and human SETD3 methylated ß-actin at H73. Knocking-out SETD3 in both human HAP1 cells and in Drosophila melanogaster resulted in the absence of methylation at ß-actin H73 in vivo, whereas ß-actin from wildtype cells or flies was > 90% methylated. As a consequence, we show that Setd3-deficient HAP1 cells have less cellular F-actin and an increased glycolytic phenotype. In conclusion, by identifying SETD3 as the actin-specific histidine N-methyltransferase, our work pioneers new research into the possible role of this modification in health and disease and questions the substrate specificity of SET-domain-containing enzymes.


Asunto(s)
Actinas/metabolismo , Fibroblastos/enzimología , N-Metiltransferasa de Histona-Lisina/genética , Músculo Esquelético/enzimología , Procesamiento Proteico-Postraduccional , Actinas/genética , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular Tumoral , Secuencia Conservada , Drosophila melanogaster/clasificación , Drosophila melanogaster/enzimología , Drosophila melanogaster/genética , Fibroblastos/citología , Glucólisis/genética , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina/química , N-Metiltransferasa de Histona-Lisina/deficiencia , N-Metiltransferasa de Histona-Lisina/farmacología , Humanos , Cinética , Metilación , Modelos Moleculares , Músculo Esquelético/química , Fenotipo , Filogenia , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
8.
Dev Cell ; 33(3): 272-84, 2015 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-25920570

RESUMEN

TORC1 regulates growth and metabolism, in part, by influencing transcriptional programs. Here, we identify REPTOR and REPTOR-BP as transcription factors downstream of TORC1 that are required for ∼ 90% of the transcriptional induction that occurs upon TORC1 inhibition in Drosophila. Thus, REPTOR and REPTOR-BP are major effectors of the transcriptional stress response induced upon TORC1 inhibition, analogous to the role of FOXO downstream of Akt. We find that, when TORC1 is active, it phosphorylates REPTOR on Ser527 and Ser530, leading to REPTOR cytoplasmic retention. Upon TORC1 inhibition, REPTOR becomes dephosphorylated in a PP2A-dependent manner, shuttles into the nucleus, joins its partner REPTOR-BP to bind target genes, and activates their transcription. In vivo functional analysis using knockout flies reveals that REPTOR and REPTOR-BP play critical roles in maintaining energy homeostasis and promoting animal survival upon nutrient restriction.


Asunto(s)
Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Homeostasis/fisiología , Complejos Multiproteicos/metabolismo , Transducción de Señal/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Factores de Transcripción/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Diana Mecanicista del Complejo 1 de la Rapamicina , Fosforilación/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda