Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Microb Pathog ; 193: 106779, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38964486

RESUMEN

Dillenia indica is a medicinal tree of the Dilleniaceae and its flower extract was used for the synthesis of silver nanoparticle (AgNPs). The optimal conditions for AgNPs synthesis were as such: 2 mM AgNO3, pH 4.5 and 48-h reaction time. The characteristic band of AgNPs was observed at the wavelength of 435 nm by UV-visible spectroscopic study. Fourier-transform infrared (FTIR) analysis depicted the involvement of several functional groups of plant extracts in the synthesis of AgNPs. Nanoparticles were mostly spherical shaped and uniformly distributed, when observation was made by Transmission electron microscopy (TEM). Energy Dispersive X-Ray (EDX) showed absorption peak approximately at 3 keV thus confirmed the presence of silver metal in AgNP. X-ray diffraction (XRD) investigation and selected area electron diffraction (SAED) patterns showed the crystalline nature of the AgNPs. Dynamic light scattering (DLS) analysis exhibited average size of the nanoparticles as 50.17 nm with a polydispersity index (PDI) value of 0.298. The zeta potential of nanoparticles was observed as -24.9 mV. To assess antibacterial activity, both AgNPs alone or its combination with the antibiotic were tried against six pathogenic bacteria. The combination of AgNPs with antibiotic was maximum effective against Shigella boydii (16.07 ± 0.35) and Klebsiella pneumoniae (15.03 ± 0.20). AgNPs alone showed maximum inhibition for both Gram-positive bacteria: methicillin-resistant Staphylococcus aureus (19.97 ± 0.20 mm) and Enterococcus faecium (19.80 ± 0.15 mm). Maximum inhibition of Enterobactor cloacae and Pseudomonas aeruginosa was observed by antibiotic taken alone. Evaluation through 2,2-diphenyl-1-picrylhydrazyl (DPPH) and DNA nicking assays demonstrated the antioxidant capabilities of the nanoparticles.


Asunto(s)
Antibacterianos , Antioxidantes , Dilleniaceae , Flores , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Plata , Plata/farmacología , Plata/química , Antibacterianos/farmacología , Antibacterianos/química , Nanopartículas del Metal/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Antioxidantes/farmacología , Antioxidantes/química , Flores/química , Dilleniaceae/química , Bacterias/efectos de los fármacos , Difracción de Rayos X , Espectroscopía Infrarroja por Transformada de Fourier , Microscopía Electrónica de Transmisión , Tamaño de la Partícula
2.
Mikrochim Acta ; 190(2): 55, 2023 01 16.
Artículo en Inglés | MEDLINE | ID: mdl-36645527

RESUMEN

A highly sensitive electrochemical sensor is reported for glucose detection using carbon nanotubes grown in situ at low temperatures on photolithographically defined gold microelectrode arrays printed on a glass substrate (CNTs/Au MEA). One of the main advantages of the present design is its potential to monitor 64 samples individually for the detection of glucose. The selectivity of the fabricated MEA towards glucose detection is achieved via modification of CNTs/Au MEA by immobilizing glucose oxidase (GOx) enzyme in the matrix of poly (paraphenylenediamine) (GOx/poly (p-PDA)/CNTs/Au MEA). The electrocatalytic and electrochemical responses of the proposed sensing platform towards glucose determination were examined via cyclic voltammetry and electrochemical impedance spectroscopy. The developed impedimetric biosensor exhibits a good linear response towards glucose detection, i.e., 0.2-27.5 µM concentration range with sensitivity and detection limits of 168.03 kΩ-1 M-1 and 0.2 ± 0.0014 µM, respectively. The proposed glucose biosensor shows excellent reproducibility, good anti-interference property, and was successfully tested in blood serum samples. Further, the applicability of the proposed sensor was successfully validated through HPLC. These results supported the viability of using such devices for the simultaneous detection of multiple electroactive biomolecules of physiological relevance.


Asunto(s)
Técnicas Biosensibles , Nanotubos de Carbono , Glucosa , Nanotubos de Carbono/química , Microelectrodos , Oro/química , Reproducibilidad de los Resultados , Técnicas Biosensibles/métodos
3.
Mikrochim Acta ; 187(1): 1, 2019 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-31797052

RESUMEN

Aminopropyltrimethoxysilane (APTMS)-functionalized zinc oxide (ZnO) nanorods and carboxylated graphene nanoflakes (c-GNF) were used in a composite that was electrophoretically deposited on an indium tin oxide (ITO) coated glass substrate. The modified ITO electrodes were characterized using various microscopic and spectroscopic techniques which confirm the deposition of the APTMS-ZnO/c-GNF composite. The electrodes have been used for the covalent immobilization of an Escherichia coli O157:H7 (E. coli)-specific DNA prob. Impedimetric studies revealed that the gene sensor displays linear response in a wide range of target DNA concentration (10-16 M to 10-6 M) with a detection limit of 0.1 fM. The studies on the cross-reactivity to other water-borne pathogens show that the bioelectrode is highly specific. Graphical abstractSchematic illustration for fabrication of nucleic acid biosensor for E. coli DNA detection using an ITO electrode modified with siloxane-functionalized zinc oxide (ZnO) nanorods and carboxylated graphene nanoflakes (c-GNFs).


Asunto(s)
Técnicas Biosensibles/métodos , ADN Bacteriano/análisis , Escherichia coli O157/genética , Grafito/química , Nanotubos/química , Compuestos de Estaño/química , Óxido de Zinc/química , Técnicas Biosensibles/instrumentación , Ácidos Carboxílicos/química , Impedancia Eléctrica , Electrodos , Electroforesis , Límite de Detección
4.
Artículo en Inglés | MEDLINE | ID: mdl-38753238

RESUMEN

Chlorambucil (CML) cures chronic lymphatic leukemia (white blood cell cancer). A high dose of CML can cause several side effects like bone marrow suppression, anemia, peripheral neuropathy, and infertility in the human body. In this research, we have synthesized a nanocomposite based on copper-doped titanium dioxide (CuTiO2) adorned with 2D hexagonal boron nitride (CuTiO2@BN) for the efficient electrochemical detection of CML. A series of characterization techniques FT-IR, XRD, Raman spectroscopy, SEM, TEM, EDAX XPS, and electrochemical characterization were used to analyze the CuTiO2@BN nanocomposite structural and morphological compositions. The sensing performance of the CuTiO2@BN modified GCE for CML detection has been assessed using voltammetry methods. The chronoamperometry technique analyzed the kinetics of the electrochemical oxidation of CML at CuTiO2@BN/GCE. The CuTiO2@BN-based glassy carbon electrode (GCE) has a synergetic electro-catalytic effect on CML oxidation due to its many active sites, enhanced surface area, fast charge transfer, and numerous defects. For the detection of CML, the suggested electrochemical sensor exhibits excellent selectivity, low limit of detection (LOD) as found 5.0 nM, wide linear ranges (0.02-8000 µM), and quick reaction times.

5.
Chemosphere ; 342: 140078, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37714484

RESUMEN

Para-benzoquinone (PBQ) is an emerging micro-contaminant owing to its chronic toxicity to plants and animals as well as its potential to induce cytotoxicity in primary rat hepatocytes and kidney cell injury. Hence, it is of utmost importance to monitor this contaminant in industrial wastewater and groundwater. In this article, we devised a unique disposable sensor that is based on a screen-printed electrode using MnO2@Co-Ni MOFs/fMWCNTs nanocomposite and is able to detect PBQ. The as-produced nanocomposite was prepared via ultrasonic assisted reflux condition and thoroughly examined by several physicochemical characterisation methods such as SEM, EDX, TEM, Raman, AFM, UV-visible, and FT-IR. Moreover, electrochemical methods like CV, DPV, EIS, and chronoamperometry were used for detecting PBQ on MnO2@Co-Ni MOFs/fMWCNTs/SPCE. Sensor performance has been investigated thoroughly and optimized to enhance the analytical potential of the fabricated sensor. DPV analysis was done on MnO2@Co-Ni MOFs/fMWCNTs that exhibit high selectivity, low peak potential, a broader linear detection range (0.005 mM-30 mM), and a LOD of 0.0027 ± 0.0005 mM. The designed electrode has shown remarkable reproducibility and excellent repeatability, with relative standard deviations of 0.12%, and 0.17%, respectively. Additionally, MnO2@Co-Ni MOFs/fMWCNTs/SPCE have been used to analyse PBQ in industrial wastewater samples, and the results have shown a significant level of recovery between 96.91 and 105.67%. Moreover, the PBQ sensor displays high applicability and was verified via the use of HPLC techniques. This disposable sensor is quick, easy, and cost-effective, so it can be useful in the future for analysing other phenolic contaminants present in environmental samples.


Asunto(s)
Grafito , Óxidos , Animales , Ratas , Límite de Detección , Reproducibilidad de los Resultados , Compuestos de Manganeso , Espectroscopía Infrarroja por Transformada de Fourier , Aguas Residuales , Benzoquinonas , Técnicas Electroquímicas/métodos , Electrodos
6.
Artículo en Inglés | MEDLINE | ID: mdl-37837595

RESUMEN

Herein, we demonstrate the preparation and application of NiCo2O4 decorated over a g-C3N4-based novel nanocomposite (NiCo2O4@g-C3N4). The prepared material was well characterized through several physicochemical techniques, including FT-IR, XRD, SEM, and TEM. The electrochemical characterizations via electrochemical impedance spectroscopy show the low electron transfer resistance of NiCo2O4@g-C3N4 owing to the successful incorporation of NiCo2O4 nanoparticles on the sheets of g-C3N4. NiCo2O4@g-C3N4 nanocomposite was employed in the fabrication of a screen-printed carbon electrode-based innovative electrochemical sensing platform and the adsorptive removal of a food dye, i.e., fast green FCF dye (FGD). The electrochemical oxidation of FGD at the developed NiCo2O4@g-C3N4 nanocomposite modified screen-printed carbon electrode (NiCo2O4@g-C3N4/SPCE) was observed at an oxidation potential of 0.65 V. A wide dual calibration range for electrochemical determination of FGD was successfully established at the prepared sensing platform, showing an excellent LOD of 0.13 µM and sensitivity of 0.6912 µA.µM-1.cm-2 through differential pulse voltammetry. Further, adsorbent dose, pH, contact time, and temperature were optimized to study the adsorption phenomena. The adsorption thermodynamics, isotherm, and kinetics were also investigated for efficient removal of FGD at NiCo2O4@g-C3N4-based adsorbents. The adsorption phenomenon of FGD on NiCo2O4@g-C3N4 was best fitted (R2 = 0.99) with the Langmuir and Henry model, and the corresponding value of Langmuir adsorption efficiency (qm) was 3.72 mg/g for the removal of FGD. The reaction kinetics for adsorption phenomenon were observed to be pseudo-second order. The sensitive analysis of FGD in a real sample was also studied.

7.
Environ Sci Pollut Res Int ; 30(18): 54250-54251, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36808037

RESUMEN

This is an answer to the letter by the editor that was sent in response to our previously published article entitled "Voltammetric analysis of epinephrine using glassy carbon electrode modified with nanocomposite prepared from Co-Nd bimetallic nanoparticles, alumina nanoparticles and functionalized multiwalled carbon nanotubes." We are grateful to the writers for showing an interest in our manuscript and for providing such helpful feedback. We emphasise that our research was just a preliminary investigation to detect epinephrine in different biological samples, however, in literature a link between epinephrine and acute respiratory distress syndrome (ARDS) is already reported. Hence, we are agreeing to the authors that epinephrine is suggested as a cause for ARDS following anaphylaxis. It is recommended that more research be carried out to evaluate the possibility of epinephrine as a cause for ARDS and to validate the therapeutic relevance of the findings. Additionally, the purpose of our research was electrochemical sensing of epinephrine alternative to the conventional means like HPLC, fluorimetry, etc. for epinephrine detection. We have found that benefits which the electrochemical sensors have, are their simplicity, cost-effectiveness, ease of use owing to their small size, mass manufacture, and straightforward operation, as well as their extreme sensitivity and selectivity, hence the electrochemical sensing methods are more beneficial than conventional techniques for epinephrine analysis.


Asunto(s)
Nanocompuestos , Nanopartículas , Nanotubos de Carbono , Óxido de Aluminio , Epinefrina , Electrodos , Técnicas Electroquímicas/métodos
8.
Artículo en Inglés | MEDLINE | ID: mdl-36207635

RESUMEN

Monitoring small amount of endocrine disrupting chemical, estradiol (E2) residue in environmental and biological samples is extremely important because of its possible connections to breast and prostate malignancies and gastrointestinal disorders. The newly synthesized graphene-coated silver nanoparticles (GN@Ag) decorated on graphitic carbon nitride (g-C3N4)-based hybrid nanomaterial (GN@Ag/g-C3N4) was used to modify glassy carbon electrode (GCE) for electroanalytical measurement of E2. The GN@Ag/g-C3N4 nanocomposite prepared through ultrasonic-assisted reflux methodology was characterized using various physicochemical methods. The scanning electron microscopy and transmission electron microscopy have shown that GN@Ag nanoparticles were decorated and randomly dispersed over g-C3N4 sheets. The exceptional electrochemical response towards the oxidation of E2 was observed through cyclic voltammetry due to the quick electron transfer ability and superior conductivity of GN@Ag/g-C3N4/GCE. The detection limit was found to be 0.002 µM with wide linear range of E2 concentration (0.005-8.0 µM) along with remarkable stability of the fabricated electrode for 21 days showing 91% retention in initial current. The kinetic parameters such as catalytic rate constant and diffusion coefficient for E2 were estimated to be 1.1 × 105 M-1 s-1 and 1.9 × 10-4 cm2 s-1, respectively, by employing chronoamperometry. The proposed sensor also demonstrated its practical applicability for E2 determination in environmental and biological samples with a recovery range of 95-104%. Furthermore, the developed sensing platform is much better compared to reported methods in terms of simplicity, accuracy, detection limit, linearity range, and usefulness in real sample for E2 sensing.

9.
Artículo en Inglés | MEDLINE | ID: mdl-36280636

RESUMEN

Herein, we investigated the electrochemical behaviour of fMWCNTs decorated with Co-Nd bimetallic nanoparticles and alumina nanoparticles (Co-Nd/Al2O3@fMWCNTs). The nanocomposites were synthesised using simple mechanical mixing and characterised by FT-IR, XRD, UV-visible studies, SEM, TEM and EDAX. Moreover, the crystalline size of the synthesised nanoparticles was also calculated using XRD data (Debye-Scherer formula) and was found in the nm range. The electrochemical behaviour of epinephrine (EP) was examined in the presence of Co-Nd/Al2O3@fMWCNTs nanocomposite modified glassy carbon electrode (GCE) using various electrochemical techniques such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. Among all the above-mentioned techniques, the DPV response of the modified Co-Nd/Al2O3@fMWCNTs/GCE under optimal circumstances revealed a dual linear range (0.2 to 4000 µM and 4000 to 14,000 µM) and LOD of 0.015 µM (S/N = 3). The sensitivities were determined to be 0.00323 µAµM-1 and 0.0004 µAµM-1 in 0.2 to 4000 µM and 4000 to 14,000 µM concentration ranges. Using chronocoulometry, the surface coverage of Co-Nd/Al2O3@fMWCNTs/GCE was calculated to be 1.37 × 10-8 mol cm-2. The fabricated Co-Nd/Al2O3@fMWCNTs/GCE demonstrated remarkable repeatability, with an RSD of 0.09%, and storage stability of 3 weeks, with 89.6% current retention. Lastly, it was found that Co-Nd/Al2O3@fMWCNTs/GCE worked well for EP analysis in a variety of biological fluids.

10.
Environ Sci Pollut Res Int ; 28(27): 36680-36694, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33704640

RESUMEN

Water pollution has become a worldwide threat as the natural water resources are shrinking day by day. Emergent actions are needed to conserve water stocks to fulfill the sustainable development goals. Herein, we have prepared activated carbon-doped magnetic nanocomposites (AC@CoFe2O4) with environment friendly approach and characterized for FTIR, XRD, SEM, EDS, BET surface area, and pHzpc. AC@CoFe2O4 nanocomposite was applied for the decolorization of toxic food dyes (rhodamine B and tartrazine) from wastewater. Effect of ultrasonic waves, pH, contact time, surfactants, temperature, and analysis of real wastewater systems were studied. Adsorption isotherm, kinetics, and thermodynamics of the experiment were calculated for the present removal process. The effect of ultrasonication shows that the maximum removal percentage for RhB was found to be 92% and for tartrazine, it was found to be 86% at 60 min. Ultrasound-assisted adsorption and degradation revealed good results because of the formation of highly active ·H and ·OH radicals in the liquid through the decomposition of water molecules by the formation of hot spots under ultrasonic waves. Highest decolorization of 69% was obtained for RhB with anionic surfactant SDS and climax decolorization of tartrazine was acquired in case of CTAB as 60.5%. Analysis of real wastewater samples shows that the decolorization of RhB was found to be ~ 91% from well-water and ~ 95% removal of tartrazine was observed from submersible water on AC@CoFe2O4 nanocomposites. The decolorization best fitted (R2 < 0.988) with Langmuir model and value of Langmuir climax decolorization efficiency (Q0) was found to be 142.68 and 435.72 mg/g for RhB and tartrazine, respectively. Kinetic analysis revealed that adsorption follows pseudo-second-order equation. The dye-loaded AC@CoFe2O4 nanocomposites were recycled by 0.1 M HCl or NaOH and regenerated AC@CoFe2O4 nanocomposites were used up to five rounds with better adsorption efficiency.


Asunto(s)
Nanocompuestos , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Carbón Orgánico , Colorantes , Concentración de Iones de Hidrógeno , Cinética , Fenómenos Magnéticos , Tensoactivos , Aguas Residuales , Contaminantes Químicos del Agua/análisis
11.
Chemosphere ; 245: 125553, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-31862552

RESUMEN

Water pollution by industrial sector is a great problem which hampers the sustainable development goals. Dye containing water effluent poses vast challenge to clean water before its discharge in to the surrounding ecosystem. Herein, we prepared humic acid functionalized Fe3O4 nanosorbents through an eco-friendly route and applied for decolorization of carcinogenic dye from water. The nanosorbents was characterized by AFM, BET surface area analyzer, FTIR, SEM-EDX, TEM, TGA/DTG, VSM and XRD. Adsorption experiments were conducted by taking the appropriate amount of dye in different sources of water under ultrasonication. Adsorption process was controlled by chemisorption in nature making pseudo-second-order model most suitable. Multilayer adsorption was taking place on the active sites of nanosorbents showing applicability of Freundlich isotherm model with highest adsorbed amount of 199.986 mg g-1 at 323 K. Rise in temperature favors the remediation of colored effluent thus positive value of ΔH° (74.234 kJ mol-1) and negative value of ΔG° shows endothermic and spontaneous nature of adsorption system. Cationic surfactant CTAB favors the adsorption (<80%) while anionic SDS gives very low removal (>48%) because of the micelle formation at the surface of nanosorbents. Decolorization from real water samples shows that the adsorption of malachite green was 97, 90, 91, 87, and 86% for Ganga river water, tap water, well water, hand pump water and submersible water, respectively. The used Fe3O4/HA nanosorbents was easily recycled from water samples through 0.1 M HCl and nanosorbents was used up to five cycles with greater percentage of removal at 85%.


Asunto(s)
Colorantes/química , Restauración y Remediación Ambiental/métodos , Sustancias Húmicas , Nanoestructuras/química , Adsorción , Ecosistema , Cinética , Fenómenos Magnéticos , Magnetismo , Nanopartículas de Magnetita/química , Reciclaje , Colorantes de Rosanilina , Temperatura , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Purificación del Agua
12.
Dalton Trans ; 48(6): 2068-2076, 2019 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-30656337

RESUMEN

A new Schiff base, CMD, designed based on a coumarin platform was synthesized and fully characterized through single crystal X-ray diffraction studies. CMD underwent selective Zn2+-triggered hydrolysis in ethanolic medium followed by restructuring of its fragments, resulting in a "turn-on" green fluorogenic response. This response was confirmed through various physico-chemical measurements along with single crystal X-ray diffraction studies. This selective hydrolytic fluorogenic event was exploited for the successful optical detection and live cell imaging of Zn2+ in SiHa cells. The above restructured products were characterized as two new Schiff bases, viz.CM and NSA, of which NSA was highly fluorescent (green). Hence, the formation of this green fluorogenic product accounted for the above fluorogenic "turn-on" sensing of Zn2+ with a sub-nanomolar detection limit. Spectroscopic evidence along with mass determinations indicated that the Zn-CMD ensemble took the form of CM-Zn-CM in solution, supporting our above proposal of hydrolysis and restructuring. However, the X-ray diffraction studies of the Zn-CMD ensemble further revealed it to consist of NSA and CM-Zn-CM', where CM' is yet another new Schiff base formed in situ during the process of developing single crystals.

13.
Dalton Trans ; 44(35): 15557-66, 2015 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-26242385

RESUMEN

We report herein the synthesis of gold nanoparticle (GNP) decorated-graphene sheets (GO-GNPs) using the template of graphene oxide (GO) by a one-pot solution-based method. A polypyrrole-GO decorated GNP nanocomposite (GO-GNP/PPY) has been electropolymerized using a potentiodynamic method on an indium tin oxide (ITO) coated glass substrate. The as-synthesized nanocomposites are characterized by transmission electron microscopy, energy dispersive X-ray spectroscopy, scanning electron microscopy, thermogravimetric analysis, Fourier transform infrared and Raman spectroscopy. It has been found that GNPs of ca. 13 nm are uniformly dispersed on the surface of GO, and have a high electrochemically active surface area. The surface morphology studies show that PPY structure changes from nanoflowers to nanostars and then to nanosheets with an increase in the scan rate (20-200 mV s(-1)). The prepared GO-GNP/PPY/ITO electrode was further used as a genosensor, where the electrochemical response was measured using methylene blue (MB) as a redox indicator. The genosensor shows a response time of 60 s with high sensitivity (1 × 10(-15) M) and linearity (1 × 10(-15)-1 × 10(-6) M) with the correlation coefficient of 0.9975.

14.
Biosens Bioelectron ; 61: 328-35, 2014 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-24912032

RESUMEN

Here, we report a simple and reproducible method for large scale fabrication of novel flower and palm-leaf like 3D cystine microstructures (CMs) with high uniformity having a size of 50 µm and 10 µm respectively, through a facile aqueous solution route as a function of pH and concentration. In a proof-of-concept study, the 3D CMs have been further explored to fabricate a label-free high-performance electrochemical immunosensor by immobilizing monoclonal antibodies. Electrochemical methods were employed to study the stepwise modification of the system and the electronic transduction for the detection. The fabricated immunosensor design demonstrates high performance with enhanced sensitivity (4.70 cfu ml(-1)) and linear sensing range from 10 to 3 x 10(9) cfu ml(-1) a long shelf-life (35 days) and high selectivity over other bacterial pathogens. The enhanced performance originates from a novel nanostructuring in which the CMs provide higher surface coverage for the immobilization of antibodies providing excellent electronic/ionic conductivity which result in the enhanced sensitivity.


Asunto(s)
Técnicas Biosensibles/instrumentación , Cistina/química , Técnicas Electroquímicas/instrumentación , Escherichia coli/aislamiento & purificación , Nanoestructuras/química , Diseño de Equipo , Infecciones por Escherichia coli/microbiología , Humanos , Inmunoensayo/métodos , Límite de Detección , Nanoestructuras/ultraestructura
15.
Nanoscale ; 5(9): 3800-7, 2013 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-23515585

RESUMEN

Herein, we envisage the possibility of preparing stable cationic poly(lactic-co-glycolic acid) (PLGA) microspheres encapsulating the iron oxide nanoparticles (IONPs; 8-12 nm). The IONPs are incorporated into PLGA in organic phase followed by microsphere formation and chitosan coating in aqueous medium via nano-emulsion technique. The average size of the microspheres, as determined by dynamic light scattering are about 310 nm, while the zeta potential for the composite remains near 35 mV at pH 4.0. These microspheres are electrophoretically deposited onto indium tin oxide (ITO)-coated glass substrate used as cathode and parallel platinum plate as the counter electrode. This platform is utilized to fabricate a DNA biosensor, by immobilizing a probe sequence specific to Escherichia coli. The bioelectrode shows a surface-controlled electrode reaction with the electron transfer coefficient (α) of 0.64 and charge transfer rate constant (k(s)) of 61.73 s(-1). Under the optimal conditions, this biosensor shows a detection limit of 8.7 × 10(-14) M and is found to retain about 81% of the initial activity after 9 cycles of use.


Asunto(s)
ADN Bacteriano/análisis , Técnicas Electroquímicas , Compuestos Férricos/química , Ácido Láctico/química , Nanopartículas del Metal/química , Ácido Poliglicólico/química , Electrodos , Escherichia coli/genética , Cinética , Microesferas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Compuestos de Estaño/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda