Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
J Virol ; 96(6): e0184321, 2022 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-35045265

RESUMEN

HIV-1 integrase (IN) is an essential enzyme for viral replication. Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 IN inhibitors and a potential new class of antiretrovirals. In this report, we identified a novel NCINI, JTP-0157602, with an original scaffold. JTP-0157602 exhibited potent antiviral activity against HIV-1 and showed a serum-shifted 90% effective concentration (EC90) of 138 nM, which is comparable to those of the FDA-approved IN strand transfer inhibitors (INSTIs). This compound was fully potent against a wide range of recombinant viruses with IN polymorphisms, including amino acids 124/125, a hot spot of IN polymorphisms. In addition, JTP-0157602 retained potent antiviral activity against a broad panel of recombinant viruses with INSTI-related resistance mutations, including multiple substitutions that emerged in clinical studies of INSTIs. Resistance selection experiments of JTP-0157602 led to the emergence of A128T and T174I mutations, which are located at the lens epithelium-derived growth factor/p75 binding pocket of IN. JTP-0157602 inhibited HIV-1 replication mainly during the late phase of the replication cycle, and HIV-1 virions produced by reactivation from HIV-1 latently infected Jurkat cells in the presence of JTP-0157602 were noninfectious. These results suggest that JTP-0157602 and analog compounds can be used to treat HIV-1 infectious diseases. IMPORTANCE Non-catalytic site integrase inhibitors (NCINIs) are allosteric HIV-1 integrase (IN) inhibitors that bind to the lens epithelium-derived growth factor (LEDGF)/p75 binding pocket of IN. NCINIs are expected to be a new class of anti-HIV-1 agents. In this study, we present a novel NCINI, JTP-0157602, which has potent activity against a broad range of HIV-1 strains with IN polymorphisms. Furthermore, JTP-0157602 shows strong antiviral activity against IN strand transfer inhibitor-resistant mutations, suggesting that JTP-0157602 and its analogs are potential agents for treating HIV-1 infections. Structural modeling indicated that JTP-0157602 binds to the LEDGF/p75 binding pocket of IN, and the results of in vitro resistance induction revealed the JTP-0157602 resistance mechanism of HIV-1. These data shed light on developing novel NCINIs that exhibit potent activity against HIV-1 with broad IN polymorphisms and multidrug-resistant HIV-1 variants.


Asunto(s)
Inhibidores de Integrasa VIH , Integrasa de VIH , VIH-1 , Fármacos Anti-VIH/farmacología , Resistencia a Medicamentos/genética , Integrasa de VIH/metabolismo , Inhibidores de Integrasa VIH/química , Inhibidores de Integrasa VIH/farmacología , VIH-1/efectos de los fármacos , VIH-1/enzimología , VIH-1/genética , Humanos
2.
Biochem Biophys Res Commun ; 349(4): 1322-8, 2006 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-16979137

RESUMEN

Mast cells play a central role in inflammatory and allergic reactions by releasing inflammatory mediators through two main pathways, immunoglobulin E-dependent and -independent activation. In the latter, mast cells are activated by a diverse range of basic molecules, including peptides and amines such as substance P, neuropeptide Y, and compound 48/80. These secretagogues are thought to activate the G proteins in mast cells through a receptor-independent mechanism. Here, we report that the basic molecules activate G proteins through the Mas-related gene (Mrg) receptors on mast cells, leading to mast cell degranulation. We suggest that one of the Mrg receptors, MrgX2, has an important role in regulating inflammatory responses to non-immunological activation of human mast cells.


Asunto(s)
Inmunoglobulina E/inmunología , Mastocitos/inmunología , Mastocitos/metabolismo , Receptores Acoplados a Proteínas G/inmunología , Receptores Acoplados a Proteínas G/metabolismo , Animales , Proteínas Portadoras/metabolismo , Células Cultivadas , Proteína de Unión a los Ácidos Grasos 7 , Humanos , Masculino , Especificidad de Órganos , Ratas , Ratas Wistar , Especificidad de la Especie , Distribución Tisular , Proteínas Supresoras de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda