RESUMEN
Activation of latent transforming growth factor (TGF)-ß2 is incompletely understood. Unlike TGF-ß1 and ß3, the TGF-ß2 prodomain lacks a seven-residue RGDLXX (L/I) integrin-recognition motif and is thought not to be activated by integrins. Here, we report the surprising finding that TGF-ß2 contains a related but divergent 13-residue integrin-recognition motif (YTSGDQKTIKSTR) that specializes it for activation by integrin αVß6 but not αVß8. Both classes of motifs compete for the same binding site in αVß6. Multiple changes in the longer motif underlie its specificity. ProTGF-ß2 structures define interesting differences from proTGF-ß1 and the structural context for activation by αVß6. Some integrin-independent activation is also seen for proTGF-ß2 and even more so for proTGF-ß3. Our findings have important implications for therapeutics to αVß6 in clinical trials for fibrosis, in which inhibition of TGF-ß2 activation has not been anticipated.
Asunto(s)
Integrinas , Factor de Crecimiento Transformador beta2 , Humanos , Integrinas/metabolismo , Factor de Crecimiento Transformador beta1/metabolismo , Antígenos de Neoplasias/metabolismo , Fibrosis , Factor de Crecimiento Transformador beta/metabolismoRESUMEN
Acute kidney injury (AKI) is a frequent finding in acutely ill and hospitalized patients arising from various etiologies. Anuric AKI, a more pronounced form of AKI in which less than 100 cc of urine is produced per day, is most frequently encountered in hospitalized, septic, and post-surgical patients, often secondary to shock or bilateral urinary tract obstruction. The development of anuric AKI in previously healthy patients after outpatient urological procedures presents a unique challenge to physicians, as many outpatient procedures require the routine perioperative administration of multiple nephrotoxic medications. Further complicating this clinical scenario, some surgical procedures that intrinsically involve iatrogenic injury to the kidney, ureter, bladder, or nearby organ can rarely lead to a phenomenon known as reflex anuria, an anuric state typically associated with AKI. Here, we report an unusual case of a previously healthy 56-year-old male who developed anuric AKI two days after direct visual internal urethrotomy (DVIU) for the treatment of a bulbar stricture. Non-contrast CT revealed no signs of an obstructive process, and laboratory findings supported an intrarenal cause of AKI. Consideration was given to non-steroidal anti-inflammatory drugs (NSAID)-induced nephrotoxicity, gentamicin-associated acute tubular necrosis, and propofol infusion syndrome, in addition to their potential synergistic effects. We also explore this as the first reported case of reflex anuria occurring at the level of the bulbar urethra, as most cases have involved direct injury to the kidney or ureter. Over the course of 10 days, our patient responded well to treatment with supportive measures and dialysis, with his vomiting, electrolyte abnormalities, renal state, and anuria eventually improving.
RESUMEN
Immune checkpoint inhibitors (ICIs) are becoming increasingly popular in treating cancers resistant to traditional chemotherapy. While ICIs have shown promise in treating cancer, the class of drugs also comes with certain risks, such as the development of pneumatosis intestinalis (PI) in rare cases. Pembrolizumab, an ICI that inhibits programmed cell death protein 1 (PD-1), has, in some rare instances, caused PI. Patients with ICI-induced PI may also present with pneumoperitoneum, pneumoretroperitoneum, pneumomediastinum, and pneumobilia. In the current report, we describe the presentation and management of a 50-year-old female with initial complaints of diffuse abdominal pain, constipation, abdominal distension, nausea, and decreased urine output approximately six months after beginning pembrolizumab and two months after the most recent dose of pembrolizumab. Subsequent CT imaging revealed massive PI with pneumoperitoneum, pneumoretroperitoneum, pneumomediastinum, and pneumobilia suspected to be secondary to pembrolizumab. Here, we discuss the possible mechanisms of ICI-induced PI and evaluate the management of patients presenting with PI and pneumoperitoneum.
RESUMEN
The 33 members of the transforming growth factor beta (TGF-ß) family are fundamentally important for organismal development and homeostasis. Family members are synthesized and secreted as pro-complexes of non-covalently associated prodomains and growth factors (GF). Pro-complexes from a subset of family members are latent and require activation steps to release the GF for signaling. Why some members are latent while others are non-latent is incompletely understood, particularly because of large family diversity. Here, we have examined representative family members in negative stain electron microscopy (nsEM) and hydrogen deuterium exchange (HDX) to identify features that differentiate latent from non-latent members. nsEM showed three overall pro-complex conformations that differed in prodomain arm domain orientation relative to the bound growth factor. Two cross-armed members, TGF-ß1 and TGF-ß2, were each latent. However, among V-armed members, GDF8 was latent whereas ActA was not. All open-armed members, BMP7, BMP9, and BMP10, were non-latent. Family members exhibited remarkably varying HDX patterns, consistent with large prodomain sequence divergence. A strong correlation emerged between latency and protection of the prodomain α1-helix from exchange. Furthermore, latency and protection from exchange correlated structurally with increased α1-helix buried surface area, hydrogen bonds, and cation-pi bonds. Moreover, a specific pattern of conserved basic and hydrophobic residues in the α1-helix and aromatic residues in the interacting fastener were found only in latent members. Thus, this first comparative survey of TGF-ß family members reveals not only diversity in conformation and dynamics but also unique features that distinguish latent members.