RESUMEN
AIMS/HYPOTHESIS: Delivery by Caesarean section continues to rise globally and has been associated with the risk of developing type 1 diabetes and the rate of progression from pre-symptomatic stage 1 or 2 type 1 diabetes to symptomatic stage 3 disease. The aim of this study was to examine the association between Caesarean delivery and progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. METHODS: Caesarean section was examined in 8135 children from the TEDDY study who had an increased genetic risk for type 1 diabetes and were followed from birth for the development of islet autoantibodies and type 1 diabetes. RESULTS: The likelihood of delivery by Caesarean section was higher in children born to mothers with type 1 diabetes (adjusted OR 4.61, 95% CI 3.60, 5.90, p<0.0001), in non-singleton births (adjusted OR 4.35, 95% CI 3.21, 5.88, p<0.0001), in premature births (adjusted OR 1.91, 95% CI 1.53, 2.39, p<0.0001), in children born in the USA (adjusted OR 2.71, 95% CI 2.43, 3.02, p<0.0001) and in children born to older mothers (age group >28-33 years: adjusted OR 1.19, 95% CI 1.04, 1.35, p=0.01; age group >33 years: adjusted OR 1.80, 95% CI 1.58, 2.06, p<0.0001). Caesarean section was not associated with an increased risk of developing pre-symptomatic early-stage type 1 diabetes (risk by age 10 years 5.7% [95% CI 4.6%, 6.7%] for Caesarean delivery vs 6.6% [95% CI 6.0%, 7.3%] for vaginal delivery, p=0.07). Delivery by Caesarean section was associated with a modestly increased rate of progression to stage 3 type 1 diabetes in children who had developed multiple islet autoantibody-positive pre-symptomatic early-stage type 1 diabetes (adjusted HR 1.36, 95% CI 1.03, 1.79, p=0.02). No interaction was observed between Caesarean section and non-HLA SNPs conferring susceptibility for type 1 diabetes. CONCLUSIONS/INTERPRETATION: Caesarean section increased the rate of progression to stage 3 type 1 diabetes in children with pre-symptomatic early-stage type 1 diabetes. DATA AVAILABILITY: Data from the TEDDY study ( https://doi.org/10.58020/y3jk-x087 ) reported here will be made available for request at the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) Central Repository (NIDDK-CR) Resources for Research (R4R) ( https://repository.niddk.nih.gov/ ).
Asunto(s)
Cesárea , Diabetes Mellitus Tipo 1 , Humanos , Diabetes Mellitus Tipo 1/genética , Femenino , Cesárea/efectos adversos , Embarazo , Niño , Factores de Riesgo , Masculino , Preescolar , Adulto , Autoanticuerpos/inmunología , Recién Nacido , Progresión de la EnfermedadRESUMEN
Zona pellucida 3 (ZP3) expression is classically found in the ZP-layer of the oocytes, lately shown in ovarian and prostate cancer. A successful ZP3 ovarian cancer immunotherapy in transgenic mice suggested its use as an attractive therapeutic target. The biological role of ZP3 in cancer growth and progression is still unknown. We found that ~88% of the analyzed adenocarcinoma, squamous and small cell lung carcinomas to express ZP3. Knockout of ZP3 in a ZP3-expressing lung adenocarcinoma cell line, significantly decreased cell viability, proliferation, and migration rates in vitro. Zona pellucida 3 knock out (ZP3-KO) cell tumors inoculated in vivo in immunodeficient non-obese diabetic, severe combined immunodeficient mice showed significant inhibition of tumor growth and mitigation of the malignant phenotype. RNA sequencing revealed the deregulation of cell migration/adhesion signaling pathways in ZP3-KO cells. This novel functional relevance of ZP3 in lung cancer emphasized the suitability of ZP3 as a target in cancer immunotherapy and as a potential cancer biomarker.
RESUMEN
Cytomegalovirus (CMV) infection has a life-long impact on the immune system, particularly on memory T cells. However, the effect of early life CMV infection on the phenotype and functionality of T cells in infants and especially longitudinal changes occurring during childhood have not been explored in detail. The phenotype and functionality of peripheral blood CD8+ and CD4+ T cells from children infected with CMV in early life (< 6 months of age) was analyzed using high-dimensional flow cytometry. Samples from CMV IgG-seropositive (CMV+) children were collected at 6 months and 6 years of age and compared to samples from CMV-seronegative (CMV-) children. Early life CMV infection caused multiple alterations within T cells. These include downregulation of CD28 expression and upregulation of CD57 expression within both CD27+ early and CD27- late effector memory CD8+ and CD4+ T-cells at 6 months of age. Of these changes, only alterations within the highly differentiated late effector memory compartment persisted at the age of 6 years. Early life CMV-infection has a distinct impact on developing CD8+ and CD4+ memory T cell compartments. It appears to induce both temporary as well as longer-lasting alterations, which may affect the functionality of the immune system throughout life.
Asunto(s)
Linfocitos T CD4-Positivos , Linfocitos T CD8-positivos , Infecciones por Citomegalovirus , Humanos , Infecciones por Citomegalovirus/inmunología , Linfocitos T CD8-positivos/inmunología , Lactante , Niño , Linfocitos T CD4-Positivos/inmunología , Femenino , Masculino , Citomegalovirus/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/inmunología , Miembro 7 de la Superfamilia de Receptores de Factores de Necrosis Tumoral/metabolismo , Células T de Memoria/inmunología , Antígenos CD28/inmunología , Antígenos CD28/metabolismo , Citometría de Flujo , Antígenos CD57/inmunología , Antígenos CD57/metabolismo , Memoria Inmunológica/inmunología , Preescolar , Inmunoglobulina G/inmunología , Inmunoglobulina G/sangreRESUMEN
BACKGROUND/AIM: Type 1 diabetes is an autoimmune disease that involves the development of autoantibodies against pancreatic islet beta-cell antigens, preceding clinical diagnosis by a period of preclinical disease activity. As screening activity to identify autoantibody-positive individuals increases, a rise in presymptomatic type 1 diabetes individuals seeking medical attention is expected. Current guidance on how to monitor these individuals in a safe but minimally invasive way is limited. This article aims to provide clinical guidance for monitoring individuals with presymptomatic type 1 diabetes to reduce the risk of diabetic ketoacidosis (DKA) at diagnosis. METHODS: Expert consensus was obtained from members of the Fr1da, GPPAD, and INNODIA consortia, three European diabetes research groups. The guidance covers both specialist and primary care follow-up strategies. RESULTS: The guidance outlines recommended monitoring approaches based on age, disease stage and clinical setting. Individuals with presymptomatic type 1 diabetes are best followed up in specialist care. For stage 1, biannual assessments of random plasma glucose and HbA1c are suggested for children, while annual assessments are recommended for adolescents and adults. For stage 2, 3-monthly clinic visits with additional home monitoring are advised. The value of repeat OGTT in stage 1 and the use of continuous glucose monitoring in stage 2 are discussed. Primary care is encouraged to monitor individuals who decline specialist care, following the guidance presented. CONCLUSIONS: As type 1 diabetes screening programs become more prevalent, effective monitoring strategies are essential to mitigate the risk of complications such as DKA. This guidance serves as a valuable resource for clinicians, providing practical recommendations tailored to an individual's age and disease stage, both within specialist and primary care settings.
Asunto(s)
Diabetes Mellitus Tipo 1 , Cetoacidosis Diabética , Niño , Adolescente , Adulto , Humanos , Autoanticuerpos , Automonitorización de la Glucosa Sanguínea , GlucemiaRESUMEN
BACKGROUND: Gut dysbiosis and increased intestinal permeability have been reported to precede type 1 diabetes-related autoimmunity. The role of gut inflammation in autoimmunity is not understood. OBJECTIVES: This study aimed to assess whether gut inflammation markers are associated with risk of islet autoimmunity and whether diet is associated with gut inflammation markers. METHODS: A nested case-control sample of 75 case children with islet autoimmunity and 88 control children was acquired from the Finnish Type 1 Diabetes Prediction and Prevention cohort. Diet was assessed with 3-d food records, and calprotectin and human ß-defensin-2 (HBD-2) were analyzed from stool samples at 6 and 12 mo of age. Conditional logistic regression analysis was used in a matched case-control setting to assess risk of autoimmunity. Analysis of variance, independent samples t test, and a general linear model were used in secondary analyses to test associations of background characteristics and dietary factors with inflammation markers. RESULTS: In unadjusted analyses, calprotectin was not associated with risk of islet autoimmunity, whereas HBD-2 in the middle (odds ratio [OR]: 3.23; 95% confidence interval [CI]: 1.03, 10.08) or highest tertile (OR: 3.02; 95% CI: 1.05, 8.69) in comparison to the lowest at 12 mo of age showed borderline association (P-trend = 0.063) with higher risk of islet autoimmunity. Excluding children with cow milk allergy in sensitivity analyses strengthened the association of HBD-2 with islet autoimmunity, whereas adjusting for dietary factors and maternal education weakened it. At age 12 mo, higher fat intake was associated with higher HBD-2 (ß: 0.219; 95% CI: 0.110, 0.328) and higher intake of dietary fiber (ß: -0.294; 95% CI: -0.510, -0.078), magnesium (ß: -0.036; 95% CI: -0.059, -0.014), and potassium (ß: -0.003; 95% CI: -0.005, -0.001) with lower HBD-2. CONCLUSIONS: Higher HBD-2 in infancy may be associated with higher risk of islet autoimmunity. Dietary factors play a role in gut inflammatory status.
Asunto(s)
Autoinmunidad , Biomarcadores , Diabetes Mellitus Tipo 1 , Dieta , Islotes Pancreáticos , Complejo de Antígeno L1 de Leucocito , beta-Defensinas , Humanos , Estudios de Casos y Controles , Finlandia , Femenino , Masculino , Complejo de Antígeno L1 de Leucocito/análisis , Diabetes Mellitus Tipo 1/inmunología , Lactante , Islotes Pancreáticos/inmunología , Factores de Riesgo , Inflamación , Heces/químicaRESUMEN
BACKGROUND: Prospective longitudinal evidence considering the entire childhood food consumption in relation to the development of islet autoimmunity (IA or) type 1 diabetes is lacking. OBJECTIVES: We studied the associations of consumption of various foods and their combinations with IA and type 1 diabetes risk. METHODS: Children with genetic susceptibility to type 1 diabetes born in 1996-2004 were followed from birth up to ≤6 y of age in the prospective birth cohort type 1 diabetes prediction and prevention study (n = 5674). Exposure variables included 34 food groups covering the entire diet based on repeated 3-d food records at ages 3 mo to 6 y. Endpoints were islet cell antibodies plus biochemical IA (n = 247), multiple biochemical IA (n = 206), and type 1 diabetes (n = 94). We analyzed associations between longitudinally observed foods and risk of IA/type 1 diabetes using a Bayesian approach to joint models in 1-food and multi-food models adjusted for energy intake, sex, human leukocyte antigen genotype, and familial diabetes. RESULTS: The final multi-food model for islet cell antibodies plus biochemical IA included oats [hazard ratio (HR): 1.09; 95% credible interval (CI): 1.04, 1.14], banana (HR: 1.07; 95% CI: 1.03, 1.11), and cruciferous vegetables (HR: 0.83; 95% CI: 0.73, 0.94). The final model for multiple biochemical IA included, in addition to the above-mentioned foods, fermented dairy (HR: 1.42; 95% CI: 1.12, 1.78) and wheat (HR: 1.10; 95% CI: 1.03, 1.18). The final multi-food model for type 1 diabetes included rye (HR: 1.27; 95% CI: 1.07, 1.50), oats (HR: 1.15; 95% CI: 1.03, 1.26), fruits (HR: 1.05; 95% CI: 1.01, 1.09), and berries (HR: 0.67; 95% CI: 0.50, 0.93). CONCLUSIONS: Higher consumption of oats, gluten-containing cereals, and fruits was associated with increased that of cruciferous vegetables with decreased risk of several type 1 diabetes-related endpoints when considering all the foods in combination. Further etiological and mechanistic studies are warranted.
RESUMEN
BACKGROUND: Association of early pregnancy body mass index (BMI) and maternal gestational weight gain (GWG), and asthma and allergic disease in children is unclear. METHODS: We analyzed data from 3176 mother-child pairs in a prospective birth cohort study. Maternal anthropometric measurements in the first and last antenatal clinic visits were obtained through post-delivery questionnaires to calculate early pregnancy BMI and maternal GWG. Asthma and allergic diseases in children by the age of 5 years was assessed using a validated questionnaire. Furthermore, serum samples were analyzed for IgE antibodies to eight allergens. We applied Cox proportional hazards and logistic regression analyses to estimate the association of early pregnancy BMI and maternal GWG (as continuous variables and categorized into quarters), and asthma, atopic eczema, atopic sensitization, and allergic rhinitis in children. RESULTS: Neither early pregnancy BMI nor maternal GWG was associated with asthma and allergic disease in children when analyzed as continuous variables. However, compared to the first quarter of GWG (a rate <0.32 kg/week), mothers in the third quarter (rate 0.42-0.52 kg/week) had children with significantly higher odds of developing atopic eczema (adjusted OR 1.49, 95% CI [1.13-1.96]) by 5 years of age. CONCLUSION: Association of early pregnancy BMI and maternal GWG, and asthma and allergic disease in children, is inconsistent. High maternal GWG may be associated with increased odds of atopic eczema.
Asunto(s)
Asma , Índice de Masa Corporal , Ganancia de Peso Gestacional , Hipersensibilidad , Humanos , Embarazo , Femenino , Asma/epidemiología , Asma/inmunología , Preescolar , Masculino , Estudios Prospectivos , Hipersensibilidad/epidemiología , Hipersensibilidad/inmunología , Adulto , Inmunoglobulina E/sangre , Lactante , Dermatitis Atópica/epidemiología , Dermatitis Atópica/inmunología , Efectos Tardíos de la Exposición Prenatal/epidemiología , Efectos Tardíos de la Exposición Prenatal/inmunología , Encuestas y Cuestionarios , Estudios de Cohortes , Cohorte de Nacimiento , Recién NacidoRESUMEN
PURPOSE: The aim was to study the association between dietary intake of B vitamins in childhood and the risk of islet autoimmunity (IA) and progression to type 1 diabetes (T1D) by the age of 10 years. METHODS: We followed 8500 T1D-susceptible children born in the U.S., Finland, Sweden, and Germany in 2004 -2010 from the Environmental Determinants of Diabetes in the Young (TEDDY) study, which is a prospective observational birth cohort. Dietary intake of seven B vitamins was calculated from foods and dietary supplements based on 24-h recall at 3 months and 3-day food records collected regularly from 6 months to 10 years of age. Cox proportional hazard models were adjusted for energy, HLA-genotype, first-degree relative with T1D, sex, and country. RESULTS: A total of 778 (9.2) children developed at least one autoantibody (any IA), and 335 (3.9%) developed multiple autoantibodies. 280 (3.3%) children had IAA and 319 (3.8%) GADA as the first autoantibody. 344 (44%) children with IA progressed to T1D. We observed that higher intake of niacin was associated with a decreased risk of developing multiple autoantibodies (HR 0.95; 95% CI 0.92, 0.98) per 1 mg/1000 kcal in niacin intake. Higher intake of pyridoxine (HR 0.66; 95% CI 0.46, 0.96) and vitamin B12 (HR 0.87; 95% CI 0.77, 0.97) was associated with a decreased risk of IAA-first autoimmunity. Higher intake of riboflavin (HR 1.38; 95% CI 1.05, 1.80) was associated with an increased risk of GADA-first autoimmunity. There were no associations between any of the B vitamins and the outcomes "any IA" and progression from IA to T1D. CONCLUSION: In this multinational, prospective birth cohort of children with genetic susceptibility to T1D, we observed some direct and inverse associations between different B vitamins and risk of IA.
Asunto(s)
Autoanticuerpos , Autoinmunidad , Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Complejo Vitamínico B , Humanos , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/epidemiología , Masculino , Femenino , Complejo Vitamínico B/administración & dosificación , Estudios Prospectivos , Niño , Preescolar , Lactante , Islotes Pancreáticos/inmunología , Autoanticuerpos/sangre , Factores de Riesgo , Dieta/métodos , Dieta/estadística & datos numéricos , Modelos de Riesgos Proporcionales , Estados Unidos/epidemiología , Finlandia/epidemiología , Suecia/epidemiología , Alemania/epidemiología , Suplementos Dietéticos , Cohorte de Nacimiento , Progresión de la EnfermedadRESUMEN
Type 1 diabetes (T1D) is an autoimmune disease that targets pancreatic islet beta cells and incorporates genetic and environmental factors1, including complex genetic elements2, patient exposures3 and the gut microbiome4. Viral infections5 and broader gut dysbioses6 have been identified as potential causes or contributing factors; however, human studies have not yet identified microbial compositional or functional triggers that are predictive of islet autoimmunity or T1D. Here we analyse 10,913 metagenomes in stool samples from 783 mostly white, non-Hispanic children. The samples were collected monthly from three months of age until the clinical end point (islet autoimmunity or T1D) in the The Environmental Determinants of Diabetes in the Young (TEDDY) study, to characterize the natural history of the early gut microbiome in connection to islet autoimmunity, T1D diagnosis, and other common early life events such as antibiotic treatments and probiotics. The microbiomes of control children contained more genes that were related to fermentation and the biosynthesis of short-chain fatty acids, but these were not consistently associated with particular taxa across geographically diverse clinical centres, suggesting that microbial factors associated with T1D are taxonomically diffuse but functionally more coherent. When we investigated the broader establishment and development of the infant microbiome, both taxonomic and functional profiles were dynamic and highly individualized, and dominated in the first year of life by one of three largely exclusive Bifidobacterium species (B. bifidum, B. breve or B. longum) or by the phylum Proteobacteria. In particular, the strain-specific carriage of genes for the utilization of human milk oligosaccharide within a subset of B. longum was present specifically in breast-fed infants. These analyses of TEDDY gut metagenomes provide, to our knowledge, the largest and most detailed longitudinal functional profile of the developing gut microbiome in relation to islet autoimmunity, T1D and other early childhood events. Together with existing evidence from human cohorts7,8 and a T1D mouse model9, these data support the protective effects of short-chain fatty acids in early-onset human T1D.
Asunto(s)
Diabetes Mellitus Tipo 1/epidemiología , Diabetes Mellitus Tipo 1/microbiología , Microbioma Gastrointestinal/fisiología , Encuestas Epidemiológicas , Edad de Inicio , Animales , Bifidobacterium/enzimología , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Lactancia Materna , Preescolar , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/prevención & control , Modelos Animales de Enfermedad , Ácidos Grasos Volátiles/farmacología , Heces/microbiología , Femenino , Microbioma Gastrointestinal/genética , Microbioma Gastrointestinal/inmunología , Humanos , Lactante , Islotes Pancreáticos/inmunología , Estudios Longitudinales , Masculino , Ratones , Leche Humana/inmunología , Leche Humana/microbiología , Proteobacteria/enzimología , Proteobacteria/genética , Proteobacteria/aislamiento & purificación , Población BlancaRESUMEN
The development of the microbiome from infancy to childhood is dependent on a range of factors, with microbial-immune crosstalk during this time thought to be involved in the pathobiology of later life diseases1-9 such as persistent islet autoimmunity and type 1 diabetes10-12. However, to our knowledge, no studies have performed extensive characterization of the microbiome in early life in a large, multi-centre population. Here we analyse longitudinal stool samples from 903 children between 3 and 46 months of age by 16S rRNA gene sequencing (n = 12,005) and metagenomic sequencing (n = 10,867), as part of the The Environmental Determinants of Diabetes in the Young (TEDDY) study. We show that the developing gut microbiome undergoes three distinct phases of microbiome progression: a developmental phase (months 3-14), a transitional phase (months 15-30), and a stable phase (months 31-46). Receipt of breast milk, either exclusive or partial, was the most significant factor associated with the microbiome structure. Breastfeeding was associated with higher levels of Bifidobacterium species (B. breve and B. bifidum), and the cessation of breast milk resulted in faster maturation of the gut microbiome, as marked by the phylum Firmicutes. Birth mode was also significantly associated with the microbiome during the developmental phase, driven by higher levels of Bacteroides species (particularly B. fragilis) in infants delivered vaginally. Bacteroides was also associated with increased gut diversity and faster maturation, regardless of the birth mode. Environmental factors including geographical location and household exposures (such as siblings and furry pets) also represented important covariates. A nested case-control analysis revealed subtle associations between microbial taxonomy and the development of islet autoimmunity or type 1 diabetes. These data determine the structural and functional assembly of the microbiome in early life and provide a foundation for targeted mechanistic investigation into the consequences of microbial-immune crosstalk for long-term health.
Asunto(s)
Microbioma Gastrointestinal/inmunología , Microbioma Gastrointestinal/fisiología , Encuestas y Cuestionarios , Adolescente , Animales , Bifidobacterium/clasificación , Bifidobacterium/genética , Bifidobacterium/aislamiento & purificación , Lactancia Materna/estadística & datos numéricos , Estudios de Casos y Controles , Niño , Preescolar , Análisis por Conglomerados , Conjuntos de Datos como Asunto , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/microbiología , Femenino , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/aislamiento & purificación , Microbioma Gastrointestinal/genética , Humanos , Lactante , Masculino , Leche Humana/inmunología , Leche Humana/microbiología , Mascotas , ARN Ribosómico 16S/genética , Hermanos , Factores de TiempoRESUMEN
AIMS/HYPOTHESIS: The aim of this study was to explore the utility of islet autoantibody (IAb) levels for the prediction of type 1 diabetes in autoantibody-positive children. METHODS: Prospective cohort studies in Finland, Germany, Sweden and the USA followed 24,662 children at increased genetic or familial risk of developing islet autoimmunity and diabetes. For the 1403 who developed IAbs (523 of whom developed diabetes), levels of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA) and insulinoma-associated antigen-2 (IA-2A) were harmonised for analysis. Diabetes prediction models using multivariate logistic regression with inverse probability censored weighting (IPCW) were trained using 10-fold cross-validation. Discriminative power for disease was estimated using the IPCW concordance index (C index) with 95% CI estimated via bootstrap. RESULTS: A baseline model with covariates for data source, sex, diabetes family history, HLA risk group and age at seroconversion with a 10-year follow-up period yielded a C index of 0.61 (95% CI 0.58, 0.63). The performance improved after adding the IAb positivity status for IAA, GADA and IA-2A at seroconversion: C index 0.72 (95% CI 0.71, 0.74). Using the IAb levels instead of positivity indicators resulted in even better performance: C index 0.76 (95% CI 0.74, 0.77). The predictive power was maintained when using the IAb levels alone: C index 0.76 (95% CI 0.75, 0.76). The prediction was better for shorter follow-up periods, with a C index of 0.82 (95% CI 0.81, 0.83) at 2 years, and remained reasonable for longer follow-up periods, with a C index of 0.76 (95% CI 0.75, 0.76) at 11 years. Inclusion of the results of a third IAb test added to the predictive power, and a suitable interval between seroconversion and the third test was approximately 1.5 years, with a C index of 0.78 (95% CI 0.77, 0.78) at 10 years follow-up. CONCLUSIONS/INTERPRETATION: Consideration of quantitative patterns of IAb levels improved the predictive power for type 1 diabetes in IAb-positive children beyond qualitative IAb positivity status.
Asunto(s)
Diabetes Mellitus Tipo 1 , Niño , Humanos , Estudios Prospectivos , Finlandia , Alemania , AutoanticuerposRESUMEN
It is predicted that Japan and European Union will soon experience appreciable decreases in their populations due to persistently low total fertility rates (TFR) below replacement level (2.1 child per woman). In the United States, where TFR has also declined, there are ethnic differences. Caucasians have rates below replacement, while TFRs among African-Americans and Hispanics are higher. We review possible links between TFR and trends in a range of male reproductive problems, including testicular cancer, disorders of sex development, cryptorchidism, hypospadias, low testosterone levels, poor semen quality, childlessness, changed sex ratio, and increasing demand for assisted reproductive techniques. We present evidence that several adult male reproductive problems arise in utero and are signs of testicular dysgenesis syndrome (TDS). Although TDS might result from genetic mutations, recent evidence suggests that it most often is related to environmental exposures of the fetal testis. However, environmental factors can also affect the adult endocrine system. Based on our review of genetic and environmental factors, we conclude that environmental exposures arising from modern lifestyle, rather than genetics, are the most important factors in the observed trends. These environmental factors might act either directly or via epigenetic mechanisms. In the latter case, the effects of exposures might have an impact for several generations post-exposure. In conclusion, there is an urgent need to prioritize research in reproductive physiology and pathophysiology, particularly in highly industrialized countries facing decreasing populations. We highlight a number of topics that need attention by researchers in human physiology, pathophysiology, environmental health sciences, and demography.
Asunto(s)
Exposición a Riesgos Ambientales , Fertilidad/genética , Interacción Gen-Ambiente , Infertilidad Masculina/epidemiología , Estilo de Vida , Predisposición Genética a la Enfermedad , Humanos , Incidencia , Infertilidad Masculina/diagnóstico , Infertilidad Masculina/genética , Infertilidad Masculina/fisiopatología , Masculino , Fenotipo , Dinámica Poblacional , Factores de RiesgoRESUMEN
INTRODUCTION: The Environmental Determinants of Diabetes in the Young study follows an HLA risk selected birth cohort for celiac disease (CD) development using a uniform protocol. Children under investigation come from 6 different regions within Europe and the United States. Our aim was to identify regional differences in CD autoimmunity and CD cumulative incidence for children born between 2004 and 2010. METHODS: Children (n = 6,628) with DQ2.5 and/or DQ8.1 were enrolled prospectively from birth in Georgia, Washington, Colorado, Finland, Germany, and Sweden. Children underwent periodic study screening for tissue transglutaminase antibodies and then CD evaluation per clinical care. Population-specific estimates were calculated by weighting the study-specific cumulative incidence with the population-specific haplogenotype frequencies obtained from large stem cell registries from each site. RESULTS: Individual haplogenotype risks for CD autoimmunity and CD varied by region and affected the cumulative incidence within that region. The CD incidence by age 10 years was highest in Swedish children at 3%. Within the United States, the incidence by age 10 years in Colorado was 2.4%. In the model adjusted for HLA, sex, and family history, Colorado children had a 2.5-fold higher risk of CD compared to Washington. Likewise, Swedish children had a 1.4-fold and 1.8-fold higher risk of CD compared with those in Finland and Germany, respectively. DISCUSSION: There is high regional variability in cumulative incidence of CD, which suggests differential environmental, genetic, and epigenetic influences even within the United States. The overall high incidence warrants a low threshold for screening and further research on region-specific CD triggers.
Asunto(s)
Enfermedad Celíaca , Niño , Humanos , Incidencia , Enfermedad Celíaca/epidemiología , Enfermedad Celíaca/genética , Enfermedad Celíaca/diagnóstico , Predisposición Genética a la Enfermedad , Autoanticuerpos , AutoinmunidadRESUMEN
The etiology of type 1 diabetes (T1D) foreshadows the pancreatic islet beta-cell autoimmune pathogenesis that heralds the clinical onset of T1D. Standardized and harmonized tests of autoantibodies against insulin (IAA), glutamic acid decarboxylase (GADA), islet antigen-2 (IA-2A), and ZnT8 transporter (ZnT8A) allowed children to be followed from birth until the appearance of a first islet autoantibody. In the Environmental Determinants of Diabetes in the Young (TEDDY) study, a multicenter (Finland, Germany, Sweden, and the United States) observational study, children were identified at birth for the T1D high-risk HLA haploid genotypes DQ2/DQ8, DQ2/DQ2, DQ8/DQ8, and DQ4/DQ8. The TEDDY study was preceded by smaller studies in Finland, Germany, Colorado, Washington, and Sweden. The aims were to follow children at increased genetic risk to identify environmental factors that trigger the first-appearing autoantibody (etiology) and progress to T1D (pathogenesis). The larger TEDDY study found that the incidence rate of the first-appearing autoantibody was split into two patterns. IAA first peaked already during the first year of life and tapered off by 3-4 years of age. GADA first appeared by 2-3 years of age to reach a plateau by about 4 years. Prior to the first-appearing autoantibody, genetic variants were either common or unique to either pattern. A split was also observed in whole blood transcriptomics, metabolomics, dietary factors, and exposures such as gestational life events and early infections associated with prolonged shedding of virus. An innate immune reaction prior to the adaptive response cannot be excluded. Clarifying the mechanisms by which autoimmunity is triggered to either insulin or GAD65 is key to uncovering the etiology of autoimmune T1D.
Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Niño , Recién Nacido , Humanos , Diabetes Mellitus Tipo 1/genética , Autoinmunidad , Autoanticuerpos , Insulina , Estudios Observacionales como Asunto , Estudios Multicéntricos como AsuntoRESUMEN
This study investigated whether children with HLA-DQ-conferred risk for type 1 diabetes (T1D) have an altered immune response to the widely-used enterovirus vaccine, namely poliovirus vaccine, and whether initiation of autoimmunity to pancreatic islets modulates this response. Neutralizing antibodies induced by the inactivated poliovirus vaccine against poliovirus type 1 (Salk) were analysed as a marker of protective immunity at the age of 18 months in a prospective birth cohort. No differences were observed in antibody titers between children with and without genetic risk for T1D (odds ratio [OR] = 0.90 [0.83, 1.06], p = 0.30). In the presence of the genetic risk, no difference was observed between children with and without islet autoimmunity (OR = 1.00 [0.78, 1.28], p = 1.00). This did not change when only children with the autoimmunity before 18 months of age were included in the analyses (OR = 1.00 [0.85, 1.18], p = 1.00). No effect was observed when groups were stratified based on autoantigen specificity of the first-appearing autoantibody (IAA or GADA). The children in each comparison group were matched for sex, calendar year and month of birth, and municipality. Accordingly, we found no indication that children who are at risk to develop islet autoimmunity would have a compromised humoral immune response which could have increased their susceptibility for enterovirus infections. In addition, the proper immune response supports the idea of testing novel enterovirus vaccines for the prevention of T1D among these individuals.
Asunto(s)
Diabetes Mellitus Tipo 1 , Infecciones por Enterovirus , Enterovirus , Islotes Pancreáticos , Niño , Humanos , Lactante , Anticuerpos Neutralizantes , Estudios Prospectivos , Infecciones por Enterovirus/prevención & control , Autoanticuerpos , Vacuna Antipolio de Virus Inactivados , Antígenos HLA-DQ/genéticaRESUMEN
BACKGROUND: Fruit and vegetable consumption has been linked to a decreased risk of asthma, but prospective evidence on longitudinal consumption in childhood is scarce. We aimed to investigate the association between fruit and vegetable consumption in childhood and the risk of asthma by the age of 5 years, and to explore the role of processing of fruits and vegetables in the Finnish Type 1 Diabetes Prediction and Prevention Allergy Study. METHODS: Child's food consumption was assessed by 3-day food records completed at the age of 3 and 6 months, and 1, 2, 3, 4, and 5 years, and asthma and allergies by a validated modified version of the ISAAC questionnaire at the age of 5 years. Consumption of processed and unprocessed fruits and vegetables was calculated. Joint models with a current value association structure for longitudinal and time-to-event data were used for statistical analyses. RESULTS: Of the 3053 children, 184 (6%) developed asthma by the age of 5 years. The risk of asthma was not associated with the consumption of all fruits and vegetables together (HR 1.00, 95%CI 0.99-1.01 per consumption of 1 g/MJ, adjusted for energy and other covariates), or with most subgroups. Weak inverse associations were seen between all leafy vegetables and asthma (HR = 0.87, 0.77-0.99), and unprocessed vegetables and nonatopic asthma (HR = 0.90, 95% CI 0.81-0.98). CONCLUSION: Total consumption of fruits and vegetables in childhood was not associated with the development of asthma by the age of 5 years. Weak inverse associations found for vegetables need to be confirmed or rejected in future studies.
Asunto(s)
Asma , Hipersensibilidad , Niño , Humanos , Preescolar , Verduras , Frutas , Estudios Prospectivos , Asma/epidemiología , Asma/etiología , DietaRESUMEN
The current definition of dietary fibre was adopted by the Codex Alimentarius Commission in 2009, but implementation requires updating food composition databases with values based on appropriate analysis methods. Previous data on population intakes of dietary fibre fractions are sparse. We studied the intake and sources of total dietary fibre (TDF) and dietary fibre fractions insoluble dietary fibre (IDF), dietary fibre soluble in water but insoluble in 76 % aqueous ethanol (SDFP) and dietary fibre soluble in water and soluble in 76 % aqueous ethanol (SDFS) in Finnish children based on new CODEX-compliant values of the Finnish National Food Composition Database Fineli. Our sample included 5193 children at increased genetic risk of type 1 diabetes from the Type 1 Diabetes Prediction and Prevention birth cohort, born between 1996 and 2004. We assessed the intake and sources based on 3-day food records collected at the ages of 6 months, 1, 3 and 6 years. Both absolute and energy-adjusted intakes of TDF were associated with age, sex and breast-feeding status of the child. Children of older parents, parents with a higher level of education, non-smoking mothers and children with no older siblings had higher energy-adjusted TDF intake. IDF was the major dietary fibre fraction in non-breastfed children, followed by SDFP and SDFS. Cereal products, fruits and berries, potatoes and vegetables were major food sources of dietary fibre. Breast milk was a major source of dietary fibre in 6-month-olds due to its human milk oligosaccharide content and resulted in high SDFS intakes in breastfed children.
Asunto(s)
Diabetes Mellitus Tipo 1 , Femenino , Humanos , Niño , Finlandia , Fibras de la Dieta/análisis , Ingestión de Energía , Leche Humana/químicaRESUMEN
Background/Objective: Growth and obesity have been associated with increased risk of islet autoimmunity (IA) and progression to type 1 diabetes. We aimed to estimate the effect of energy-yielding macronutrient intake on the development of IA through BMI. Research Design and Methods: Genetically at-risk children (n = 5,084) in Finland, Germany, Sweden, and the USA, who were autoantibody negative at 2 years of age, were followed to the age of 8 years, with anthropometric measurements and 3-day food records collected biannually. Of these, 495 (9.7%) children developed IA. Mediation analysis for time-varying covariates (BMI z-score) and exposure (energy intake) was conducted. Cox proportional hazard method was used in sensitivity analysis. Results: We found an indirect effect of total energy intake (estimates: indirect effect 0.13 [0.05, 0.21]) and energy from protein (estimates: indirect effect 0.06 [0.02, 0.11]), fat (estimates: indirect effect 0.03 [0.01, 0.05]), and carbohydrates (estimates: indirect effect 0.02 [0.00, 0.04]) (kcal/day) on the development of IA. A direct effect was found for protein, expressed both as kcal/day (estimates: direct effect 1.09 [0.35, 1.56]) and energy percentage (estimates: direct effect 72.8 [3.0, 98.0]) and the development of GAD autoantibodies (GADA). In the sensitivity analysis, energy from protein (kcal/day) was associated with increased risk for GADA, hazard ratio 1.24 (95% CI: 1.09, 1.53), p = 0.042. Conclusions: This study confirms that higher total energy intake is associated with higher BMI, which leads to higher risk of the development of IA. A diet with larger proportion of energy from protein has a direct effect on the development of GADA.
Asunto(s)
Autoinmunidad , Análisis de Mediación , Niño , Humanos , Índice de Masa Corporal , Ingestión de Alimentos , Ingestión de Energía , AutoanticuerposRESUMEN
In many populations, the peak period of incidence of type 1 diabetes (T1D) has been observed to be around 10-14 years of age, coinciding with puberty, but direct evidence of the role of puberty in the development of T1D is limited. We therefore aimed to investigate whether puberty and the timing of its onset are associated with the development of islet autoimmunity (IA) and subsequent progression to T1D. A Finnish population-based cohort of children with HLA-DQB1-conferred susceptibility to T1D was followed from 7 years of age until 15 years of age or until a diagnosis of T1D (n = 6920). T1D-associated autoantibodies and growth were measured at 3- to 12-month intervals, and pubertal onset timing was assessed based on growth. The analyses used a three-state survival model. IA was defined as being either positive for islet cell antibodies plus at least one biochemical autoantibody (ICA + 1) or as being repeatedly positive for at least one biochemical autoantibody (BC1). Depending on the IA definition, either 303 (4.4%, ICA + 1) or 435 (6.3%, BC1) children tested positive for IA by the age of 7 years, and 211 (3.2%, ICA + 1)) or 198 (5.3%, BC1) developed IA during follow-up. A total of 172 (2.5%) individuals developed T1D during follow-up, of whom 169 were positive for IA prior to the clinical diagnosis. Puberty was associated with an increase in the risk of progression to T1D, but only from ICA + 1-defined IA (hazard ratio 1.57; 95% confidence interval 1.14, 2.16), and the timing of pubertal onset did not affect the association. No association between puberty and the risk of IA was detected. In conclusion, puberty may affect the risk of progression but is not a risk factor for IA.
Asunto(s)
Diabetes Mellitus Tipo 1 , Islotes Pancreáticos , Niño , Humanos , Adolescente , Diabetes Mellitus Tipo 1/epidemiología , Autoinmunidad , Progresión de la Enfermedad , Autoanticuerpos , PubertadRESUMEN
PURPOSE: The aim was to study the associations between dietary intake of fatty acids in childhood and the risk of islet autoimmunity and type 1 diabetes (T1D). METHODS: The prospective Finnish Type 1 Diabetes Prediction and Prevention (DIPP) Study included children with genetic susceptibility to T1D born between 1996 and 2004. Participants were followed up every 3 to 12 months up to 6 years for diet, islet autoantibodies, and T1D. Dietary intake of several fatty acids at the age of 3 months to 6 years was assessed 1-8 times per participant with a 3-day food record. Joint models adjusted for energy intake, sex, HLA genotype and familial diabetes were used to investigate the associations of longitudinal intake of fatty acids and the development of islet autoimmunity and T1D. RESULTS: During the 6-year follow-up, 247 (4.4%) children of 5626 developed islet autoimmunity and 94 (1.7%) children of 5674 developed T1D. Higher intake of monounsaturated fatty acids (HR 0.63; 95% CI 0.47, 0.82), arachidonic acid (0.69; 0.50, 0.94), total n-3 fatty acids (0.64; 0.48, 0.84), and long-chain n-3 fatty acids (0.14; 0.04, 0.43), was associated with a decreased risk of islet autoimmunity with and without energy adjustment. Higher intake of total fat (0.73; 0.53, 0.98), and saturated fatty acids (0.55; 0.33, 0.90) was associated with a decreased risk of T1D only when energy adjusted. CONCLUSION: Intake of several fatty acids was associated with a decreased risk of islet autoimmunity or T1D among high-risk children. Our findings support the idea that dietary factors, including n-3 fatty acids, may play a role in the disease process of T1D.