Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Quant Plant Biol ; 5: e5, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38774130

RESUMEN

Plant growth requires the integration of internal and external cues, perceived and transduced into a developmental programme of cell division, elongation and wall thickening. Mechanical forces contribute to this regulation, and thigmomorphogenesis typically includes reducing stem height, increasing stem diameter, and a canonical transcriptomic response. We present data on a bZIP transcription factor involved in this process in grasses. Brachypodium distachyon SECONDARY WALL INTERACTING bZIP (SWIZ) protein translocated into the nucleus following mechanostimulation. Classical touch-responsive genes were upregulated in B. distachyon roots following touch, including significant induction of the glycoside hydrolase 17 family, which may be unique to grass thigmomorphogenesis. SWIZ protein binding to an E-box variant in exons and introns was associated with immediate activation followed by repression of gene expression. SWIZ overexpression resulted in plants with reduced stem and root elongation. These data further define plant touch-responsive transcriptomics and physiology, offering insights into grass mechanotranduction dynamics.

2.
BMC Biotechnol ; 13: 61, 2013 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-23902793

RESUMEN

BACKGROUND: Lignin is a significant barrier in the conversion of plant biomass to bioethanol. Cinnamyl alcohol dehydrogenase (CAD) and caffeic acid O-methyltransferase (COMT) catalyze key steps in the pathway of lignin monomer biosynthesis. Brown midrib mutants in Zea mays and Sorghum bicolor with impaired CAD or COMT activity have attracted considerable agronomic interest for their altered lignin composition and improved digestibility. Here, we identified and functionally characterized candidate genes encoding CAD and COMT enzymes in the grass model species Brachypodium distachyon with the aim of improving crops for efficient biofuel production. RESULTS: We developed transgenic plants overexpressing artificial microRNA designed to silence BdCAD1 or BdCOMT4. Both transgenes caused altered flowering time and increased stem count and weight. Downregulation of BdCAD1 caused a leaf brown midrib phenotype, the first time this phenotype has been observed in a C3 plant. While acetyl bromide soluble lignin measurements were equivalent in BdCAD1 downregulated and control plants, histochemical staining and thioacidolysis indicated a decrease in lignin syringyl units and reduced syringyl/guaiacyl ratio in the transgenic plants. BdCOMT4 downregulated plants exhibited a reduction in total lignin content and decreased Maule staining of syringyl units in stem. Ethanol yield by microbial fermentation was enhanced in amiR-cad1-8 plants. CONCLUSION: These results have elucidated two key genes in the lignin biosynthetic pathway in B. distachyon that, when perturbed, may result in greater stem biomass yield and bioconversion efficiency.


Asunto(s)
Oxidorreductasas de Alcohol/metabolismo , Brachypodium/enzimología , Regulación de la Expresión Génica de las Plantas , Metiltransferasas/metabolismo , Proteínas de Plantas/metabolismo , Oxidorreductasas de Alcohol/genética , Brachypodium/genética , Pared Celular/metabolismo , Regulación hacia Abajo , Etanol/metabolismo , Perfilación de la Expresión Génica , Silenciador del Gen , Genes de Plantas , Lignina/biosíntesis , Metiltransferasas/genética , Fenotipo , Filogenia , Proteínas de Plantas/genética , Tallos de la Planta/química , Tallos de la Planta/genética , Plantas Modificadas Genéticamente/enzimología , Alineación de Secuencia , Sorghum/genética , Transgenes , Zea mays/genética
3.
Front Plant Sci ; 9: 1895, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30627134

RESUMEN

Arabidopsis thaliana CELLULOSE SYNTHASE A4/7/8 (CESA4/7/8) are three non-redundant subunits of the secondary cell wall cellulose synthase complex. Transcript abundance of these genes can vary among genotypes and expression quantitative trait loci (eQTL) were identified in a recombinant population of the accessions Bay-0 and Shahdara. Genetic mapping and analysis of the transcript levels of CESAs between two distinct near isogenic lines (NILs) confirmed a change in CESA4 expression that segregates within that interval. We sequenced the promoters and identified 16 polymorphisms differentiating CESA4Sha and CESA4Bay . In order to determine which of these SNPs could be responsible for this eQTL, we screened for transcription factor protein affinity with promoter fragments of CESA4Bay, CESA4Sha , and the reference genome CESA4Col . The wall thickening activator proteins NAC SECONDARY WALL THICKENING PROMOTING FACTOR2 (NST2) and NST3 exhibited a decrease in binding with the CESA4Sha promoter with a tracheary element-regulating cis-element (TERE) polymorphism. While NILs harboring the TERE polymorphisms exhibited significantly different CESA4 expression, cellulose crystallinity and cell wall thickness were indistinguishable. These results suggest that the TERE polymorphism resulted in differential transcription factor binding and CESA4 expression; yet A. thaliana is able to tolerate this transcriptional variability without compromising the structural elements of the plant, providing insight into the elasticity of gene regulation as it pertains to cell wall biosynthesis and regulation. We also explored available DNA affinity purification sequencing data to resolve a core binding site, C(G/T)TNNNNNNNA(A/C)G, for secondary wall NACs referred to as the VNS element.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda