Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell ; 81(17): 3623-3636.e6, 2021 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-34270916

RESUMEN

ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


Asunto(s)
Bacillus subtilis/citología , Citidina Trifosfato/metabolismo , Pirofosfatasas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/fisiología , División Celular/genética , División Celular/fisiología , Membrana Celular/metabolismo , Cromosomas Bacterianos/genética , Citidina Trifosfato/fisiología , Proteínas del Citoesqueleto/genética , Pirofosfatasas/fisiología
2.
PLoS Biol ; 22(3): e3002540, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38466718

RESUMEN

DNA methylation plays central roles in diverse cellular processes, ranging from error-correction during replication to regulation of bacterial defense mechanisms. Nevertheless, certain aberrant methylation modifications can have lethal consequences. The mechanisms by which bacteria detect and respond to such damage remain incompletely understood. Here, we discover a highly conserved but previously uncharacterized transcription factor (Cada2), which orchestrates a methylation-dependent adaptive response in Caulobacter. This response operates independently of the SOS response, governs the expression of genes crucial for direct repair, and is essential for surviving methylation-induced damage. Our molecular investigation of Cada2 reveals a cysteine methylation-dependent posttranslational modification (PTM) and mode of action distinct from its Escherichia coli counterpart, a trait conserved across all bacteria harboring a Cada2-like homolog instead. Extending across the bacterial kingdom, our findings support the notion of divergence and coevolution of adaptive response transcription factors and their corresponding sequence-specific DNA motifs. Despite this diversity, the ubiquitous prevalence of adaptive response regulators underscores the significance of a transcriptional switch, mediated by methylation PTM, in driving a specific and essential bacterial DNA damage response.


Asunto(s)
Bacterias , Metilación de ADN , Prevalencia , Bacterias/genética , Metilación de ADN/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Reparación del ADN , Procesamiento Proteico-Postraduccional , Daño del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , ADN Bacteriano/metabolismo
3.
PLoS Biol ; 20(11): e3001790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36327213

RESUMEN

Gene transfer agents (GTAs) are prophage-like entities found in many bacterial genomes that cannot propagate themselves and instead package approximately 5 to 15 kbp fragments of the host genome that can then be transferred to related recipient cells. Although suggested to facilitate horizontal gene transfer (HGT) in the wild, no clear physiological role for GTAs has been elucidated. Here, we demonstrate that the α-proteobacterium Caulobacter crescentus produces bona fide GTAs. The production of Caulobacter GTAs is tightly regulated by a newly identified transcription factor, RogA, that represses gafYZ, the direct activators of GTA synthesis. Cells lacking rogA or expressing gafYZ produce GTAs harboring approximately 8.3 kbp fragment of the genome that can, after cell lysis, be transferred into recipient cells. Notably, we find that GTAs promote the survival of Caulobacter in stationary phase and following DNA damage by providing recipient cells a template for homologous recombination-based repair. This function may be broadly conserved in other GTA-producing organisms and explain the prevalence of this unusual HGT mechanism.


Asunto(s)
Caulobacter crescentus , Profagos , Profagos/genética , Profagos/metabolismo , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Transferencia de Gen Horizontal/genética , Genoma Bacteriano , Reparación del ADN/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica
4.
Mol Microbiol ; 112(2): 461-481, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30907454

RESUMEN

The extracytoplasmic function (ECF) σ factor, σE , is a key regulator of the cell envelope stress response in Streptomyces coelicolor. Although its role in maintaining cell wall integrity has been known for over a decade, a comprehensive analysis of the genes under its control has not been undertaken. Here, using a combination of chromatin immunoprecipitation-sequencing (ChIP-seq), microarray transcriptional profiling and bioinformatic analysis, we attempt to define the σE regulon. Approximately half of the genes identified encode proteins implicated in cell envelope function. Seventeen novel targets were validated by S1 nuclease mapping or in vitro transcription, establishing a σE -binding consensus. Subsequently, we used bioinformatic analysis to look for conservation of the σE target promoters identified in S. coelicolor across 19 Streptomyces species. Key proteins under σE control across the genus include the actin homolog MreB, three penicillin-binding proteins, two L,D-transpeptidases, a LytR-CpsA-Psr-family protein predicted to be involved in cell wall teichoic acid deposition and a predicted MprF protein, which adds lysyl groups to phosphatidylglycerol to neutralize membrane surface charge. Taken together, these analyses provide biological insight into the σE -mediated cell envelope stress response in the genus Streptomyces.


Asunto(s)
Proteínas Bacterianas/metabolismo , Factor sigma/metabolismo , Streptomyces coelicolor/fisiología , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Regiones Promotoras Genéticas , Regulón , Factor sigma/genética , Streptomyces coelicolor/genética , Estrés Fisiológico
5.
Nucleic Acids Res ; 46(3): 1196-1209, 2018 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-29186514

RESUMEN

Proper chromosome segregation is essential in all living organisms. In Caulobacter crescentus, the ParA-ParB-parS system is required for proper chromosome segregation and cell viability. The bacterial centromere-like parS DNA locus is the first to be segregated following chromosome replication. parS is bound by ParB protein, which in turn interacts with ParA to partition the ParB-parS nucleoprotein complex to each daughter cell. Here, we investigated the genome-wide distribution of ParB on the Caulobacter chromosome using a combination of in vivo chromatin immunoprecipitation (ChIP-seq) and in vitro DNA affinity purification with deep sequencing (IDAP-seq). We confirmed two previously identified parS sites and discovered at least three more sites that cluster ∼8 kb from the origin of replication. We showed that Caulobacter ParB nucleates at parS sites and associates non-specifically with ∼10 kb flanking DNA to form a high-order nucleoprotein complex on the left chromosomal arm. Lastly, using transposon mutagenesis coupled with deep sequencing (Tn-seq), we identified a ∼500 kb region surrounding the native parS cluster that is tolerable to the insertion of a second parS cluster without severely affecting cell viability. Our results demonstrate that the genomic distribution of parS sites is highly restricted and is crucial for chromosome segregation in Caulobacter.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Caulobacter crescentus/genética , Centrómero/metabolismo , Cromosomas Bacterianos/química , ADN Bacteriano/metabolismo , Proteínas Bacterianas/metabolismo , Sitios de Unión , Proteínas Portadoras/metabolismo , Caulobacter crescentus/metabolismo , Centrómero/química , Mapeo Cromosómico/métodos , Segregación Cromosómica , Cromosomas Bacterianos/metabolismo , Replicación del ADN , Elementos Transponibles de ADN , ADN Bacteriano/química , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , Motivos de Nucleótidos , Unión Proteica
6.
PLoS Genet ; 11(7): e1005348, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26131907

RESUMEN

Transcription initiation that involves the use of a 2- to ~4-nt oligoribonucleotide primer, "primer-dependent initiation," (PDI) has been shown to be widely prevalent at promoters of genes expressed during the stationary phase of growth in Escherichia coli. However, the extent to which PDI impacts E. coli physiology, and the extent to which PDI occurs in other bacteria is not known. Here we establish a physiological role for PDI in E. coli as a regulatory mechanism that modulates biofilm formation. We further demonstrate using high-throughput sequencing of RNA 5' ends (5' RNA-seq) that PDI occurs in the pathogenic bacterium Vibrio cholerae. A comparative global analysis of PDI in V. cholerae and E. coli reveals that the pattern of PDI is strikingly similar in the two organisms. In particular, PDI is detected in stationary phase, is not detected in exponential phase, and is preferentially apparent at promoters carrying the sequence T-1A+1 or G-1G+1 (where position +1 corresponds to the position of de novo initiation). Our findings demonstrate a physiological role for PDI and suggest PDI may be widespread among Gammaproteobacteria. We propose that PDI in both E. coli and V. cholerae occurs though a growth phase-dependent process that leads to the preferential generation of the linear dinucleotides 5´-UA-3´ and 5´-GG-3´.


Asunto(s)
Biopelículas/crecimiento & desarrollo , Escherichia coli/genética , Regiones Promotoras Genéticas/genética , Iniciación de la Transcripción Genética/fisiología , Vibrio cholerae/genética , Regiones no Traducidas 5'/genética , Proteínas de la Membrana Bacteriana Externa/genética , Secuencia de Bases , Proteínas de Escherichia coli/genética , Gammaproteobacteria/genética , Regulación Bacteriana de la Expresión Génica , Genes Bacterianos/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ARN
7.
Nat Commun ; 15(1): 4749, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834569

RESUMEN

Gene Transfer Agents (GTAs) are phage-like particles that cannot self-multiply and be infectious. Caulobacter crescentus, a bacterium best known as a model organism to study bacterial cell biology and cell cycle regulation, has recently been demonstrated to produce bona fide GTA particles (CcGTA). Since C. crescentus ultimately die to release GTA particles, the production of GTA particles must be tightly regulated and integrated with the host physiology to prevent a collapse in cell population. Two direct activators of the CcGTA biosynthetic gene cluster, GafY and GafZ, have been identified, however, it is unknown how GafYZ controls transcription or how they coordinate gene expression of the CcGTA gene cluster with other accessory genes elsewhere on the genome for complete CcGTA production. Here, we show that the CcGTA gene cluster is transcriptionally co-activated by GafY, integration host factor (IHF), and by GafZ-mediated transcription anti-termination. We present evidence that GafZ is a transcription anti-terminator that likely forms an anti-termination complex with RNA polymerase, NusA, NusG, and NusE to bypass transcription terminators within the 14 kb CcGTA cluster. Overall, we reveal a two-tier regulation that coordinates the synthesis of GTA particles in C. crescentus.


Asunto(s)
Proteínas Bacterianas , Caulobacter crescentus , Regulación Bacteriana de la Expresión Génica , Familia de Multigenes , Activación Transcripcional , Caulobacter crescentus/genética , Caulobacter crescentus/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Bacteriófagos/genética , Transcripción Genética , Terminación de la Transcripción Genética
8.
J Bacteriol ; 193(12): 3100-8, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21515767

RESUMEN

We describe the identification and functional characterization of cdgB (SCO4281), a recently discovered target of BldD, a key regulator of morphological differentiation and antibiotic production in the mycelial bacteria of the genus Streptomyces. cdgB (cyclic dimeric GMP [c-di-GMP] B) encodes a GGDEF-containing protein that has diguanylate cyclase activity in vitro. Consistent with this enzymatic activity, heterologous expression of cdgB in Escherichia coli resulted in increased production of extracellular matrix in colonies and enhanced surface attachment of cells in standing liquid cultures. In Streptomyces coelicolor, both overexpression and deletion of cdgB inhibited aerial-mycelium formation, and overexpression also inhibited production of the antibiotic actinorhodin, implicating c-di-GMP in the regulation of developmental processes in Streptomyces.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Liasas de Fósforo-Oxígeno/metabolismo , Streptomyces coelicolor/enzimología , Streptomyces coelicolor/metabolismo , Antraquinonas/metabolismo , Proteínas Bacterianas/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/genética , Liasas de Fósforo-Oxígeno/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
9.
Mol Microbiol ; 78(2): 361-79, 2010 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-20979333

RESUMEN

BldD is a transcriptional regulator essential for morphological development and antibiotic production in Streptomyces coelicolor. Here we identify the BldD regulon by means of chromatin immunoprecipitation-microarray analysis (ChIP-chip). The BldD regulon encompasses ~167 transcriptional units, of which more than 20 are known to play important roles in development (e.g. bldA, bldC, bldH/adpA, bldM, bldN, ssgA, ssgB, ftsZ, whiB, whiG, smeA-ssfA) and/or secondary metabolism (e.g. nsdA, cvn9, bldA, bldC, leuA). Strikingly, 42 BldD target genes (~25% of the regulon) encode regulatory proteins, stressing the central, pleiotropic role of BldD. Almost all BldD binding sites identified by ChIP-chip are present in the promoters of the target genes. An exception is the tRNA gene bldA, where BldD binds within the region encoding the primary transcript, immediately downstream of the position corresponding to the processed, mature 3 end of the tRNA. Through gene overexpression, we identified a novel BldD target gene (cdgA) that influences differentiation and antibiotic production. cdgA encodes a GGDEF domain protein, implicating c-di-GMP in the regulation of Streptomyces development. Sequence analysis of the upstream regions of the complete regulon identified a 15 bp inverted repeat that functions as a high-affinity binding site for BldD, as was shown by electrophoretic mobility shift assays and DNase I footprinting analysis. High-scoring copies of the BldD binding site were found at relevant positions in the genomes of other bacteria containing a BldD homologue, suggesting the role of BldD is conserved in sporulating actinomycetes.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Regulón , Streptomyces coelicolor/genética , Factores de Transcripción/metabolismo , Antibacterianos/biosíntesis , Proteínas Bacterianas/genética , Inmunoprecipitación de Cromatina , ADN Bacteriano/genética , Proteínas de Unión al ADN/genética , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genes Esenciales , Genes Reguladores , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Bacteriano/metabolismo , ARN de Transferencia de Leucina/metabolismo , Análisis de Secuencia de ADN , Streptomyces coelicolor/crecimiento & desarrollo , Streptomyces coelicolor/metabolismo , Factores de Transcripción/genética
10.
Elife ; 102021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34397383

RESUMEN

Proper chromosome segregation is essential in all living organisms. The ParA-ParB-parS system is widely employed for chromosome segregation in bacteria. Previously, we showed that Caulobacter crescentus ParB requires cytidine triphosphate to escape the nucleation site parS and spread by sliding to the neighboring DNA (Jalal et al., 2020). Here, we provide the structural basis for this transition from nucleation to spreading by solving co-crystal structures of a C-terminal domain truncated C. crescentus ParB with parS and with a CTP analog. Nucleating ParB is an open clamp, in which parS is captured at the DNA-binding domain (the DNA-gate). Upon binding CTP, the N-terminal domain (NTD) self-dimerizes to close the NTD-gate of the clamp. The DNA-gate also closes, thus driving parS into a compartment between the DNA-gate and the C-terminal domain. CTP hydrolysis and/or the release of hydrolytic products are likely associated with reopening of the gates to release DNA and recycle ParB. Overall, we suggest a CTP-operated gating mechanism that regulates ParB nucleation, spreading, and recycling.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Caulobacter crescentus/genética , Segregación Cromosómica/genética , Citidina Trifosfato/metabolismo , ADN Bacteriano/metabolismo , Proteínas Bacterianas/genética , Caulobacter crescentus/metabolismo , Cristalización , Hidrólisis , Unión Proteica , Dominios Proteicos
11.
Elife ; 92020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32077854

RESUMEN

In all living organisms, it is essential to transmit genetic information faithfully to the next generation. The SMC-ParAB-parS system is widely employed for chromosome segregation in bacteria. A DNA-binding protein ParB nucleates on parS sites and must associate with neighboring DNA, a process known as spreading, to enable efficient chromosome segregation. Despite its importance, how the initial few ParB molecules nucleating at parS sites recruit hundreds of further ParB to spread is not fully understood. Here, we reconstitute a parS-dependent ParB spreading event using purified proteins from Caulobacter crescentus and show that CTP is required for spreading. We further show that ParB spreading requires a closed DNA substrate, and a DNA-binding transcriptional regulator can act as a roadblock to attenuate spreading unidirectionally in vitro. Our biochemical reconstitutions recapitulate many observed in vivo properties of ParB and opens up avenues to investigate the interactions between ParB-parS with ParA and SMC.


Asunto(s)
Proteínas Bacterianas/metabolismo , Caulobacter crescentus/metabolismo , Citidina Trifosfato/metabolismo , ADN Primasa/metabolismo , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/metabolismo , Hidrólisis
12.
Cell Rep ; 32(3): 107928, 2020 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-32698006

RESUMEN

Specific interactions between proteins and DNA are essential to many biological processes. Yet, it remains unclear how the diversification in DNA-binding specificity was brought about, and the mutational paths that led to changes in specificity are unknown. Using a pair of evolutionarily related DNA-binding proteins, each with a different DNA preference (ParB [Partitioning Protein B] and Noc [Nucleoid Occlusion Factor], which both play roles in bacterial chromosome maintenance), we show that specificity is encoded by a set of four residues at the protein-DNA interface. Combining X-ray crystallography and deep mutational scanning of the interface, we suggest that permissive mutations must be introduced before specificity-switching mutations to reprogram specificity and that mutational paths to new specificity do not necessarily involve dual-specificity intermediates. Overall, our results provide insight into the possible evolutionary history of ParB and Noc and, in a broader context, might be useful for understanding the evolution of other classes of DNA-binding proteins.


Asunto(s)
Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/genética , Mutación/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Secuencia de Bases , Secuencia Conservada , Cristalografía por Rayos X , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Escherichia coli/metabolismo , Modelos Biológicos , Unión Proteica , Dominios Proteicos
13.
Nat Commun ; 9(1): 1139, 2018 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-29556010

RESUMEN

Streptomycetes are notable for their complex life cycle and production of most clinically important antibiotics. A key factor that controls entry into development and the onset of antibiotic production is the 68-residue protein, BldC. BldC is a putative DNA-binding protein related to MerR regulators, but lacks coiled-coil dimerization and effector-binding domains characteristic of classical MerR proteins. Hence, the molecular function of the protein has been unclear. Here we show that BldC is indeed a DNA-binding protein and controls a regulon that includes other key developmental regulators. Intriguingly, BldC DNA-binding sites vary significantly in length. Our BldC-DNA structures explain this DNA-binding capability by revealing that BldC utilizes a DNA-binding mode distinct from MerR and other known regulators, involving asymmetric head-to-tail oligomerization on DNA direct repeats that results in dramatic DNA distortion. Notably, BldC-like proteins radiate throughout eubacteria, establishing BldC as the founding member of a new structural family of regulators.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas de Unión al ADN/metabolismo , Streptomyces coelicolor/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Secuencia de Bases , Sitios de Unión/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Bacteriano/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Regulación Bacteriana de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Genes Bacterianos , Modelos Moleculares , Conformación de Ácido Nucleico , Regiones Promotoras Genéticas , Estructura Cuaternaria de Proteína , Regulón , Secuencias Repetitivas de Ácidos Nucleicos , Proteínas Represoras/genética , Electricidad Estática , Streptomyces coelicolor/genética , Streptomyces coelicolor/crecimiento & desarrollo
14.
Cell Rep ; 20(9): 2057-2071, 2017 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-28854358

RESUMEN

The structural maintenance of chromosomes (SMC) complex plays an important role in chromosome organization and segregation in most living organisms. In Caulobacter crescentus, SMC is required to align the left and the right arms of the chromosome that run in parallel down the long axis of the cell. However, the mechanism of SMC-mediated alignment of chromosomal arms remains elusive. Here, using genome-wide methods and microscopy of single cells, we show that Caulobacter SMC is recruited to the centromeric parS site and that SMC-mediated arm alignment depends on the chromosome-partitioning protein ParB. We provide evidence that SMC likely tethers the parS-proximal regions of the chromosomal arms together, promoting arm alignment. Furthermore, we show that highly transcribed genes near parS that are oriented against SMC translocation disrupt arm alignment, suggesting that head-on transcription interferes with SMC translocation. Our results demonstrate a tight interdependence of bacterial chromosome organization and global patterns of transcription.


Asunto(s)
Caulobacter crescentus/genética , Cromosomas Bacterianos/genética , Transcripción Genética , Proteínas Bacterianas , ADN Bacteriano/metabolismo , Genoma Bacteriano , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda