Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
PLoS Biol ; 21(7): e3002202, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37459303

RESUMEN

Toxoplasma gondii secretes protein effectors to subvert the human immune system sufficiently to establish a chronic infection. Relative to murine infections, little is known about which parasite effectors disarm human immune responses. Here, we used targeted CRISPR screening to identify secreted protein effectors required for parasite survival in IFNγ-activated human cells. Independent screens were carried out using 2 Toxoplasma strains that differ in virulence in mice, leading to the identification of effectors required for survival in IFNγ-activated human cells. We identify the secreted protein GRA57 and 2 other proteins, GRA70 and GRA71, that together form a complex which enhances the ability of parasites to persist in IFNγ-activated human foreskin fibroblasts (HFFs). Components of the protein machinery required for export of Toxoplasma proteins into the host cell were also found to be important for parasite resistance to IFNγ in human cells, but these export components function independently of the identified protein complex. Host-mediated ubiquitination of the parasite vacuole has previously been associated with increased parasite clearance from human cells, but we find that vacuoles from GRA57, GRA70, and GRA71 knockout strains are surprisingly less ubiquitinated by the host cell. We hypothesise that this is likely a secondary consequence of deletion of the complex, unlinked to the IFNγ resistance mediated by these effectors.


Asunto(s)
Parásitos , Toxoplasma , Humanos , Animales , Ratones , Toxoplasma/metabolismo , Parásitos/metabolismo , Interferón gamma , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Virulencia , Vacuolas/metabolismo
2.
PLoS Pathog ; 18(10): e1010901, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36265000

RESUMEN

Fundamental processes that govern the lytic cycle of the intracellular parasite Toxoplasma gondii are regulated by several signalling pathways. However, how these pathways are connected remains largely unknown. Here, we compare the phospho-signalling networks during Toxoplasma egress from its host cell by artificially raising cGMP or calcium levels. We show that both egress inducers trigger indistinguishable signalling responses and provide evidence for a positive feedback loop linking calcium and cyclic nucleotide signalling. Using WT and conditional knockout parasites of the non-essential calcium-dependent protein kinase 3 (CDPK3), which display a delay in calcium inonophore-mediated egress, we explore changes in phosphorylation and lipid signalling in sub-minute timecourses after inducing Ca2+ release. These studies indicate that cAMP and lipid metabolism are central to the feedback loop, which is partly dependent on CDPK3 and allows the parasite to respond faster to inducers of egress. Biochemical analysis of 4 phosphodiesterases (PDEs) identified in our phosphoproteomes establishes PDE2 as a cAMP-specific PDE which regulates Ca2+ induced egress in a CDPK3-independent manner. The other PDEs display dual hydrolytic activity and play no role in Ca2+ induced egress. In summary, we uncover a positive feedback loop that enhances signalling during egress, thereby linking several signalling pathways.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Calcio/metabolismo , Nucleótidos Cíclicos/metabolismo , Retroalimentación , Lípidos
3.
PLoS Pathog ; 18(12): e1011021, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36476844

RESUMEN

Toxoplasma gondii is an intracellular parasite that can infect many host species and is a cause of significant human morbidity worldwide. T. gondii secretes a diverse array of effector proteins into the host cell which are critical for infection. The vast majority of these secreted proteins have no predicted functional domains and remain uncharacterised. Here, we carried out a pooled CRISPR knockout screen in the T. gondii Prugniaud strain in vivo to identify secreted proteins that contribute to parasite immune evasion in the host. We demonstrate that ROP1, the first-identified rhoptry protein of T. gondii, is essential for virulence and has a previously unrecognised role in parasite resistance to interferon gamma-mediated innate immune restriction. This function is conserved in the highly virulent RH strain of T. gondii and contributes to parasite growth in both murine and human macrophages. While ROP1 affects the morphology of rhoptries, from where the protein is secreted, it does not affect rhoptry secretion. Finally, we show that ROP1 co-immunoprecipitates with the host cell protein C1QBP, an emerging regulator of innate immune signaling. In summary, we identify putative in vivo virulence factors in the T. gondii Prugniaud strain and show that ROP1 is an important and previously overlooked effector protein that counteracts both murine and human innate immunity.


Asunto(s)
Inmunidad Innata , Proteínas Protozoarias , Toxoplasma , Animales , Humanos , Ratones , Proteínas Portadoras , Proteínas Mitocondriales/metabolismo , Proteínas Protozoarias/metabolismo , Factores de Virulencia
4.
Malar J ; 23(1): 151, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755636

RESUMEN

BACKGROUND: Sporozoite invasion of hepatocytes is an essential step in the Plasmodium life-cycle and has similarities, at the cellular level, to merozoite invasion of erythrocytes. In the case of the Plasmodium blood-stage, efforts to identify host-pathogen protein-protein interactions have yielded important insights including vaccine candidates. In the case of sporozoite-hepatocyte invasion, the host-pathogen protein-protein interactions involved are poorly understood. METHODS: To gain a better understanding of the protein-protein interaction between the sporozoite ligands and host receptors, a systematic screen was performed. The previous Plasmodium falciparum and human surface protein ectodomain libraries were substantially extended, resulting in the creation of new libraries comprising 88 P. falciparum sporozoite protein coding sequences and 182 sequences encoding human hepatocyte surface proteins. Having expressed recombinant proteins from these sequences, a plate-based assay was used, capable of detecting low affinity interactions between recombinant proteins, modified for enhanced throughput, to screen the proteins for interactions. The novel interactions identified in the screen were characterized biochemically, and their essential role in parasite invasion was further elucidated using antibodies and genetically manipulated Plasmodium parasites. RESULTS: A total of 7540 sporozoite-hepatocyte protein pairs were tested under conditions capable of detecting interactions of at least 1.2 µM KD. An interaction between the human fibroblast growth factor receptor 4 (FGFR4) and the P. falciparum protein Pf34 is identified and reported here, characterizing its affinity and demonstrating the blockade of the interaction by reagents, including a monoclonal antibody. Furthermore, further interactions between Pf34 and a second P. falciparum rhoptry neck protein, PfRON6, and between human low-density lipoprotein receptor (LDLR) and the P. falciparum protein PIESP15 are identified. Conditional genetic deletion confirmed the essentiality of PfRON6 in the blood-stage, consistent with the important role of this protein in parasite lifecycle. Pf34 was refractory to attempted genetic modification. Antibodies to Pf34 abrogated the interaction and had a modest effect upon sporozoite invasion into primary human hepatocytes. CONCLUSION: Pf34 and PfRON6 may be members of a functionally important invasion complex which could be a target for future interventions. The modified interaction screening assay, protein expression libraries and P. falciparum mutant parasites reported here may be a useful tool for protein interaction discovery and antigen candidate screening which could be of wider value to the scientific community.


Asunto(s)
Hepatocitos , Plasmodium falciparum , Proteínas Protozoarias , Esporozoítos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Hepatocitos/parasitología , Humanos , Esporozoítos/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Interacciones Huésped-Patógeno , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Interacciones Huésped-Parásitos , Unión Proteica
5.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artículo en Inglés | MEDLINE | ID: mdl-34819379

RESUMEN

Plasmodium malaria parasites are obligate intracellular protozoans that use a unique form of locomotion, termed gliding motility, to move through host tissues and invade cells. The process is substrate dependent and powered by an actomyosin motor that drives the posterior translocation of extracellular adhesins which, in turn, propel the parasite forward. Gliding motility is essential for tissue translocation in the sporozoite and ookinete stages; however, the short-lived erythrocyte-invading merozoite stage has never been observed to undergo gliding movement. Here we show Plasmodium merozoites possess the ability to undergo gliding motility in vitro and that this mechanism is likely an important precursor step for successful parasite invasion. We demonstrate that two human infective species, Plasmodium falciparum and Plasmodium knowlesi, have distinct merozoite motility profiles which may reflect distinct invasion strategies. Additionally, we develop and validate a higher throughput assay to evaluate the effects of genetic and pharmacological perturbations on both the molecular motor and the complex signaling cascade that regulates motility in merozoites. The discovery of merozoite motility provides a model to study the glideosome and adds a dimension for work aiming to develop treatments targeting the blood stage invasion pathways.


Asunto(s)
Eritrocitos/parasitología , Merozoítos/fisiología , Plasmodium falciparum/genética , Plasmodium/metabolismo , Proteínas Protozoarias/metabolismo , Esporozoítos/fisiología , Citoesqueleto de Actina/metabolismo , Actomiosina/química , Animales , Eritrocitos/citología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Concentración 50 Inhibidora , Locomoción , Proteínas de la Membrana/metabolismo , Transducción de Señal
6.
Antimicrob Agents Chemother ; 67(8): e0035623, 2023 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-37428074

RESUMEN

Malaria parasites in the blood stage express a single transmembrane transport protein for the release of the glycolytic end product l-lactate/H+ from the cell. This transporter is a member of the strictly microbial formate-nitrite transporter (FNT) family and a novel putative drug target. Small, drug-like FNT inhibitors potently block lactate transport and kill Plasmodium falciparum parasites in culture. The protein structure of Plasmodium falciparum FNT (PfFNT) in complex with the inhibitor has been resolved and confirms its previously predicted binding site and its mode of action as a substrate analog. Here, we investigated the mutational plasticity and essentiality of the PfFNT target on a genetic level, and established its in vivo druggability using mouse malaria models. We found that, besides a previously identified PfFNT G107S resistance mutation, selection of parasites at 3 × IC50 (50% inhibitory concentration) gave rise to two new point mutations affecting inhibitor binding: G21E and V196L. Conditional knockout and mutation of the PfFNT gene showed essentiality in the blood stage, whereas no phenotypic defects in sexual development were observed. PfFNT inhibitors mainly targeted the trophozoite stage and exhibited high potency in P. berghei- and P. falciparum-infected mice. Their in vivo activity profiles were comparable to that of artesunate, demonstrating strong potential for the further development of PfFNT inhibitors as novel antimalarials.


Asunto(s)
Antimaláricos , Malaria Falciparum , Parásitos , Animales , Ratones , Transportadores de Ácidos Monocarboxílicos/química , Transportadores de Ácidos Monocarboxílicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Malaria Falciparum/parasitología , Antimaláricos/farmacología , Antimaláricos/química , Parásitos/metabolismo , Lactatos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Proteínas Protozoarias/metabolismo
7.
PLoS Biol ; 17(5): e3000264, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31075098

RESUMEN

Cyclic AMP (cAMP) is an important signalling molecule across evolution, but its role in malaria parasites is poorly understood. We have investigated the role of cAMP in asexual blood stage development of Plasmodium falciparum through conditional disruption of adenylyl cyclase beta (ACß) and its downstream effector, cAMP-dependent protein kinase (PKA). We show that both production of cAMP and activity of PKA are critical for erythrocyte invasion, whilst key developmental steps that precede invasion still take place in the absence of cAMP-dependent signalling. We also show that another parasite protein with putative cyclic nucleotide binding sites, Plasmodium falciparum EPAC (PfEpac), does not play an essential role in blood stages. We identify and quantify numerous sites, phosphorylation of which is dependent on cAMP signalling, and we provide mechanistic insight as to how cAMP-dependent phosphorylation of the cytoplasmic domain of the essential invasion adhesin apical membrane antigen 1 (AMA1) regulates erythrocyte invasion.


Asunto(s)
AMP Cíclico/metabolismo , Interacciones Huésped-Parásitos , Malaria Falciparum/metabolismo , Malaria Falciparum/parasitología , Parásitos/metabolismo , Transducción de Señal , Adenilil Ciclasas/metabolismo , Animales , Calcio/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Parásitos/ultraestructura , Fosfoproteínas/metabolismo , Fosforilación , Fosfoserina/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/patogenicidad , Plasmodium falciparum/ultraestructura , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(13): 6361-6370, 2019 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-30850550

RESUMEN

Apicomplexan parasites replicate within a protective organelle, called the parasitophorous vacuole (PV). The Toxoplasma gondii PV is filled with a network of tubulated membranes, which are thought to facilitate trafficking of effectors and nutrients. Despite being critical to parasite virulence, there is scant mechanistic understanding of the network's functions. Here, we identify the parasite-secreted kinase WNG1 (With-No-Gly-loop) as a critical regulator of tubular membrane biogenesis. WNG1 family members adopt an atypical protein kinase fold lacking the glycine rich ATP-binding loop that is required for catalysis in canonical kinases. Unexpectedly, we find that WNG1 is an active protein kinase that localizes to the PV lumen and phosphorylates PV-resident proteins, several of which are essential for the formation of a functional intravacuolar network. Moreover, we show that WNG1-dependent phosphorylation of these proteins is required for their membrane association, and thus their ability to tubulate membranes. Consequently, WNG1 knockout parasites have an aberrant PV membrane ultrastructure. Collectively, our results describe a unique family of Toxoplasma kinases and implicate phosphorylation of secreted proteins as a mechanism of regulating PV development during parasite infection.


Asunto(s)
Membranas/metabolismo , Membranas/ultraestructura , Proteínas Quinasas/metabolismo , Toxoplasma/metabolismo , Toxoplasma/ultraestructura , Vacuolas/metabolismo , Vacuolas/ultraestructura , Cristalografía por Rayos X , Técnicas de Inactivación de Genes , Interacciones Huésped-Parásitos , Modelos Moleculares , Fosforilación , Conformación Proteica , Proteínas Quinasas/genética , Transporte de Proteínas , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/genética , Toxoplasma/patogenicidad , Virulencia
9.
Mol Microbiol ; 111(5): 1167-1181, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30402958

RESUMEN

Toxoplasma gondii parasites rapidly exit their host cell when exposed to calcium ionophores. Calcium-dependent protein kinase 3 (TgCDPK3) was previously identified as a key mediator in this process, as TgCDPK3 knockout (∆cdpk3) parasites fail to egress in a timely manner. Phosphoproteomic analysis comparing WT with ∆cdpk3 parasites revealed changes in the TgCDPK3-dependent phosphoproteome that included proteins important for regulating motility, but also metabolic enzymes, indicating that TgCDPK3 controls processes beyond egress. Here we have investigated a predicted direct target of TgCDPK3, ApiAT5-3, a putative transporter of the major facilitator superfamily, and show that it is rapidly phosphorylated at serine 56 after induction of calcium signalling. Conditional knockout of apiAT5-3 results in transcriptional upregulation of most ribosomal subunits, but no alternative transporters, and subsequent parasite death. Mutating the S56 to a non-phosphorylatable alanine leads to a fitness cost, suggesting that phosphorylation of this residue is beneficial, albeit not essential, for tyrosine import. Using a combination of metabolomics and heterologous expression, we confirmed a primary role in tyrosine import for ApiAT5-3. However, no significant differences in tyrosine import could be detected in phosphorylation site mutants showing that if tyrosine transport is affected by S56 phosphorylation, its regulatory role is subtle.


Asunto(s)
Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo , Señalización del Calcio , Proteínas de Unión al Calcio/metabolismo , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Metabolómica , Mutación , Fosforilación , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Tirosina/metabolismo
10.
PLoS Pathog ; 11(11): e1005268, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26544049

RESUMEN

Members of the family of calcium dependent protein kinases (CDPK's) are abundant in certain pathogenic parasites and absent in mammalian cells making them strong drug target candidates. In the obligate intracellular parasite Toxoplasma gondii TgCDPK3 is important for calcium dependent egress from the host cell. Nonetheless, the specific substrate through which TgCDPK3 exerts its function during egress remains unknown. To close this knowledge gap we applied the proximity-based protein interaction trap BioID and identified 13 proteins that are either near neighbors or direct interactors of TgCDPK3. Among these was Myosin A (TgMyoA), the unconventional motor protein greatly responsible for driving the gliding motility of this parasite, and whose phosphorylation at serine 21 by an unknown kinase was previously shown to be important for motility and egress. Through a non-biased peptide array approach we determined that TgCDPK3 can specifically phosphorylate serines 21 and 743 of TgMyoA in vitro. Complementation of the TgmyoA null mutant, which exhibits a delay in egress, with TgMyoA in which either S21 or S743 is mutated to alanine failed to rescue the egress defect. Similarly, phosphomimetic mutations in the motor protein overcome the need for TgCDPK3. Moreover, extracellular Tgcdpk3 mutant parasites have motility defects that are complemented by expression of S21+S743 phosphomimetic of TgMyoA. Thus, our studies establish that phosphorylation of TgMyoA by TgCDPK3 is responsible for initiation of motility and parasite egress from the host-cell and provides mechanistic insight into how this unique kinase regulates the lytic cycle of Toxoplasma gondii.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Calcio/metabolismo , Miosinas/metabolismo , Proteínas Quinasas/metabolismo , Toxoplasma/enzimología , Fosforilación
11.
PLoS Biol ; 12(4): e1001845, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24781109

RESUMEN

Recent information has revealed the functional diversity and importance of mitochondria in many cellular processes including orchestrating the innate immune response. Intriguingly, several infectious agents, such as Toxoplasma, Legionella, and Chlamydia, have been reported to grow within vacuoles surrounded by host mitochondria. Although many hypotheses have been proposed for the existence of host mitochondrial association (HMA), the causes and biological consequences of HMA have remained unanswered. Here we show that HMA is present in type I and III strains of Toxoplasma but missing in type II strains, both in vitro and in vivo. Analysis of F1 progeny from a type II×III cross revealed that HMA is a Mendelian trait that we could map. We use bioinformatics to select potential candidates and experimentally identify the polymorphic parasite protein involved, mitochondrial association factor 1 (MAF1). We show that introducing the type I (HMA+) MAF1 allele into type II (HMA-) parasites results in conversion to HMA+ and deletion of MAF1 in type I parasites results in a loss of HMA. We observe that the loss and gain of HMA are associated with alterations in the transcription of host cell immune genes and the in vivo cytokine response during murine infection. Lastly, we use exogenous expression of MAF1 to show that it binds host mitochondria and thus MAF1 is the parasite protein directly responsible for HMA. Our findings suggest that association with host mitochondria may represent a novel means by which Toxoplasma tachyzoites manipulate the host. The existence of naturally occurring HMA+ and HMA- strains of Toxoplasma, Legionella, and Chlamydia indicates the existence of evolutionary niches where HMA is either advantageous or disadvantageous, likely reflecting tradeoffs in metabolism, immune regulation, and other functions of mitochondria.


Asunto(s)
Mitocondrias/parasitología , Proteínas Protozoarias/inmunología , Toxoplasma/inmunología , Toxoplasma/patogenicidad , Toxoplasmosis/inmunología , Animales , Animales Modificados Genéticamente , Citocinas/metabolismo , Femenino , Inmunidad Innata , Ratones , Ratones Endogámicos C57BL , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/clasificación , Toxoplasmosis/parasitología , Toxoplasmosis/patología , Vacuolas/parasitología
12.
PLoS Pathog ; 10(6): e1004197, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24945436

RESUMEN

Calcium-dependent protein kinases (CDPKs) are conserved in plants and apicomplexan parasites. In Toxoplasma gondii, TgCDPK3 regulates parasite egress from the host cell in the presence of a calcium-ionophore. The targets and the pathways that the kinase controls, however, are not known. To identify pathways regulated by TgCDPK3, we measured relative phosphorylation site usage in wild type and TgCDPK3 mutant and knock-out parasites by quantitative mass-spectrometry using stable isotope-labeling with amino acids in cell culture (SILAC). This revealed known and novel phosphorylation events on proteins predicted to play a role in host-cell egress, but also a novel function of TgCDPK3 as an upstream regulator of other calcium-dependent signaling pathways, as we also identified proteins that are differentially phosphorylated prior to egress, including proteins important for ion-homeostasis and metabolism. This observation is supported by the observation that basal calcium levels are increased in parasites where TgCDPK3 has been inactivated. Most of the differential phosphorylation observed in CDPK3 mutants is rescued by complementation of the mutants with a wild type copy of TgCDPK3. Lastly, the TgCDPK3 mutants showed hyperphosphorylation of two targets of a related calcium-dependent kinase (TgCDPK1), as well as TgCDPK1 itself, indicating that this latter kinase appears to play a role downstream of TgCDPK3 function. Overexpression of TgCDPK1 partially rescues the egress phenotype of the TgCDPK3 mutants, reinforcing this conclusion. These results show that TgCDPK3 plays a pivotal role in regulating tachyzoite functions including, but not limited to, egress.


Asunto(s)
Señalización del Calcio/genética , Calcio/metabolismo , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Toxoplasma/genética , Técnicas de Inactivación de Genes , Fosforilación , Proteínas Quinasas/biosíntesis , Proteoma , Proteínas Protozoarias/biosíntesis , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Toxoplasma/metabolismo
13.
Mol Microbiol ; 87(5): 1061-73, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23320541

RESUMEN

Histone variants are key components of the epigenetic code and evolved to perform specific functions in transcriptional regulation, DNA repair, chromosome segregation and other fundamental processes. Although variants for histone H2A and H3 are found throughout the eukaryotic kingdom, variants of histone H2B and H4 are rarely encountered. H2B.Z is one of those rare H2B variants and is apicomplexan-specific. Here we show that in Plasmodium falciparum H2B.Z localizes to euchromatic intergenic regions throughout intraerythrocytic development and together with H2A.Z forms a double-variant nucleosome subtype. These nucleosomes are enriched in promoters over 3' intergenic regions and their occupancy generally correlates with the strength of the promoter, but not with its temporal activity. Remarkably, H2B.Z occupancy levels exhibit a clear correlation with the base-composition of the underlying DNA, raising the intriguing possibility that the extreme AT content of the intergenic regions within the Plasmodium genome might be instructive for histone variant deposition. In summary, our data show that the H2A.Z/H2B.Z double-variant nucleosome demarcates putative regulatory regions of the P. falciparum epigenome and likely provides a scaffold for dynamic regulation of gene expression in this deadly human pathogen.


Asunto(s)
Secuencia Rica en At , Genoma de Protozoos , Histonas/metabolismo , Nucleosomas/genética , Plasmodium falciparum/genética , Regiones Promotoras Genéticas , Proteínas Protozoarias/metabolismo , Secuencia de Bases , ADN Intergénico , Histonas/genética , Humanos , Malaria Falciparum/parasitología , Datos de Secuencia Molecular , Nucleosomas/metabolismo , Plasmodium falciparum/metabolismo , Transporte de Proteínas , Proteínas Protozoarias/genética
14.
PLoS Pathog ; 8(11): e1003049, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23209419

RESUMEN

Egress from the host cell is a crucial and highly regulated step in the biology of the obligate intracellular parasite, Toxoplasma gondii. Active egress depends on calcium fluxes and appears to be a crucial step in escaping the attack from the immune system and, potentially, in enabling the parasites to shuttle into appropriate cells for entry into the brain of the host. Previous genetic screens have yielded mutants defective in both ionophore-induced egress and ionophore-induced death. Using whole genome sequencing of one mutant and subsequent analysis of all mutants from these screens, we find that, remarkably, four independent mutants harbor a mis-sense mutation in the same gene, TgCDPK3, encoding a calcium-dependent protein kinase. All four mutations are predicted to alter key regions of TgCDPK3 and this is confirmed by biochemical studies of recombinant forms of each. By complementation we confirm a crucial role for TgCDPK3 in the rapid induction of parasite egress and we establish that TgCDPK3 is critical for formation of latent stages in the brains of mice. Genetic knockout of TgCDPK3 confirms a crucial role for this kinase in parasite egress and a non-essential role for it in the lytic cycle.


Asunto(s)
Proteínas de Unión al Calcio/metabolismo , Proteínas Quinasas/metabolismo , Proteínas Protozoarias/metabolismo , Toxoplasma/enzimología , Toxoplasmosis/enzimología , Animales , Encéfalo/metabolismo , Encéfalo/patología , Proteínas de Unión al Calcio/genética , Técnicas de Silenciamiento del Gen , Ratones , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , Toxoplasma/genética , Toxoplasma/patogenicidad , Toxoplasmosis/genética , Toxoplasmosis/patología
15.
Cell Syst ; 15(6): 544-562.e8, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38861992

RESUMEN

Most biological processes are regulated by signaling modules that bind to short linear motifs. For protein kinases, substrates may have full or only partial matches to the kinase recognition motif, a property known as "substrate quality." However, it is not clear whether differences in substrate quality represent neutral variation or if they have functional consequences. We examine this question for the kinase CK2, which has many fundamental functions. We show that optimal CK2 sites are phosphorylated at maximal stoichiometries and found in many conditions, whereas minimal substrates are more weakly phosphorylated and have regulatory functions. Optimal CK2 sites tend to be more conserved, and substrate quality is often tuned by selection. For intermediate sites, increases or decreases in substrate quality may be deleterious, as we demonstrate for a CK2 substrate at the kinetochore. The results together suggest a strong role for substrate quality in phosphosite function and evolution. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Quinasa de la Caseína II , Quinasa de la Caseína II/metabolismo , Fosforilación , Humanos , Especificidad por Sustrato , Cinetocoros/metabolismo , Evolución Molecular , Sitios de Unión
16.
mBio ; 15(6): e0237723, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38709067

RESUMEN

Plasmodium falciparum, the deadly protozoan parasite responsible for malaria, has a tightly regulated gene expression profile closely linked to its intraerythrocytic development cycle. Epigenetic modifiers of the histone acetylation code have been identified as key regulators of the parasite's transcriptome but require further investigation. In this study, we map the genomic distribution of Plasmodium falciparum histone deacetylase 1 (PfHDAC1) across the erythrocytic asexual development cycle and find it has a dynamic occupancy over a wide array of developmentally relevant genes. Overexpression of PfHDAC1 results in a progressive increment in parasite load over consecutive rounds of the asexual infection cycle and is associated with enhanced gene expression of multiple families of host cell invasion factors (merozoite surface proteins, rhoptry proteins, etc.) and with increased merozoite invasion efficiency. With the use of class-specific inhibitors, we demonstrate that PfHDAC1 activity in parasites is crucial for timely intraerythrocytic development. Interestingly, overexpression of PfHDAC1 results in decreased sensitivity to frontline-drug dihydroartemisinin in parasites. Furthermore, we identify that artemisinin exposure can interfere with PfHDAC1 abundance and chromatin occupancy, resulting in enrichment over genes implicated in response/resistance to artemisinin. Finally, we identify that dihydroartemisinin exposure can interrupt the in vitro catalytic deacetylase activity and post-translational phosphorylation of PfHDAC1, aspects that are crucial for its genomic function. Collectively, our results demonstrate PfHDAC1 to be a regulator of critical functions in asexual parasite development and host invasion, which is responsive to artemisinin exposure stress and deterministic of resistance to it. IMPORTANCE: Malaria is a major public health problem, with the parasite Plasmodium falciparum causing most of the malaria-associated mortality. It is spread by the bite of infected mosquitoes and results in symptoms such as cyclic fever, chills, and headache. However, if left untreated, it can quickly progress to a more severe and life-threatening form. The World Health Organization currently recommends the use of artemisinin combination therapy, and it has worked as a gold standard for many years. Unfortunately, certain countries in southeast Asia and Africa, burdened with a high prevalence of malaria, have reported cases of drug-resistant infections. One of the major problems in controlling malaria is the emergence of artemisinin resistance. Population genomic studies have identified mutations in the Kelch13 gene as a molecular marker for artemisinin resistance. However, several reports thereafter indicated that Kelch13 is not the main mediator but rather hinted at transcriptional deregulation as a major determinant of drug resistance. Earlier, we identified PfGCN5 as a global regulator of stress-responsive genes, which are known to play a central role in artemisinin resistance generation. In this study, we have identified PfHDAC1, a histone deacetylase as a cell cycle regulator, playing an important role in artemisinin resistance generation. Taken together, our study identified key transcriptional regulators that play an important role in artemisinin resistance generation.


Asunto(s)
Antimaláricos , Artemisininas , Histona Desacetilasa 1 , Plasmodium falciparum , Plasmodium falciparum/genética , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/crecimiento & desarrollo , Artemisininas/farmacología , Antimaláricos/farmacología , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Humanos , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Reproducción Asexuada/genética
17.
mBio ; 15(5): e0314023, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38530030

RESUMEN

The Plasmodium falciparum merozoite surface protein MSPDBL2 is a polymorphic antigen targeted by acquired immune responses, and normally expressed in only a minority of mature schizonts. The potential relationship of MSPDBL2 to sexual commitment is examined, as variable mspdbl2 transcript levels and proportions of MSPDBL2-positive mature schizonts in clinical isolates have previously correlated with levels of many sexual stage parasite gene transcripts, although not with the master regulator ap2-g. It is demonstrated that conditional overexpression of the gametocyte development protein GDV1, which promotes sexual commitment, also substantially increases the proportion of MSPDBL2-positive schizonts in culture. Conversely, truncation of the gdv1 gene is shown to prevent any expression of MSPDBL2. However, across diverse P. falciparum cultured lines, the variable proportions of MSPDBL2 positivity in schizonts do not correlate significantly with variable gametocyte conversion rates, indicating it is not involved in sexual commitment. Confirming this, examining a line with endogenous hemagglutinin-tagged AP2-G showed that the individual schizonts expressing MSPDBL2 are mostly different from those expressing AP2-G. Using a selection-linked integration system, modified P. falciparum lines were engineered to express an intact or disrupted version of MSPDBL2, showing the protein is not required for sexual commitment or early gametocyte development. Asexual parasite multiplication rates were also not affected by expression of either intact or disrupted MSPDBL2 in a majority of schizonts. Occurring alongside sexual commitment, the role of the discrete MSPDBL2-positive schizont subpopulation requires further investigation in natural infections where it is under immune selection. IMPORTANCE: Malaria parasites in the blood are remarkably variable, able to switch antigenic targets so they may survive within humans who have already developed specific immune responses. This is one of the challenges in developing vaccines against malaria. MSPDBL2 is a target of naturally acquired immunity expressed in minority proportions of schizonts, the end stages of each 2-day replication cycle in red blood cells which contain merozoites prepared to invade new red blood cells. Results show that the proportion of schizonts expressing MSPDBL2 is positively controlled by the expression of the regulatory gametocyte development protein GDV1. It was previously known that expression of GDV1 leads to increased expression of AP2-G which causes parasites to switch to sexual development, so a surprising finding here is that MSPDBL2-positive parasites are mostly distinct from those that express AP2-G. This discrete antigenic subpopulation of mostly asexual parasites is regulated alongside sexually committed parasites, potentially enabling survival under stress conditions.


Asunto(s)
Antígenos de Protozoos , Plasmodium falciparum , Proteínas Protozoarias , Esquizontes , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/inmunología , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Esquizontes/metabolismo , Esquizontes/inmunología , Esquizontes/genética , Humanos , Malaria Falciparum/parasitología , Malaria Falciparum/inmunología , Regulación de la Expresión Génica , Eritrocitos/parasitología
18.
Elife ; 122023 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-37737226

RESUMEN

Reverse genetics is key to understanding protein function, but the mechanistic connection between a gene of interest and the observed phenotype is not always clear. Here we describe the use of proximity labeling using TurboID and site-specific quantification of biotinylated peptides to measure changes to the local protein environment of selected targets upon perturbation. We apply this technique, which we call PerTurboID, to understand how the Plasmodium falciparum-exported kinase, FIKK4.1, regulates the function of the major virulence factor of the malaria-causing parasite, PfEMP1. We generated independent TurboID fusions of two proteins that are predicted substrates of FIKK4.1 in a FIKK4.1 conditional KO parasite line. Comparing the abundance of site-specific biotinylated peptides between wildtype and kinase deletion lines reveals the differential accessibility of proteins to biotinylation, indicating changes to localization, protein-protein interactions, or protein structure which are mediated by FIKK4.1 activity. We further show that FIKK4.1 is likely the only FIKK kinase that controls surface levels of PfEMP1, but not other surface antigens, on the infected red blood cell under standard culture conditions. We believe PerTurboID is broadly applicable to study the impact of genetic or environmental perturbation on a selected cellular niche.


Enzymes known as protein kinases regulate a huge variety of biological processes inside cells by attaching small tags known as phosphate groups onto specific locations on certain proteins. For example, the parasite that causes malaria infections in humans and great apes, injects a protein kinase called FIKK4.1 into certain cells in its host. This enzyme then adds phosphate groups to various parasite and host proteins that, in turn, causes them to form a large group of proteins (known as the cytoadhesion complex) to protect the parasite from being cleared by the hosts' immune defences. However, it remains unclear how and where the complex forms, and how the parasite regulates it. Proximity labelling is a well-established method that allows researchers to label and identify proteins that are near to a protein of interest. To investigate how the FIKK4.1 enzyme alters host cells to make the cytoadhesion complex, Davies et al. combined proximity labelling with methods that disturb the normal state of cells at a specific timepoint during development. The team used this new approach ­ named PerTurboID ­ to identify the proteins surrounding three components in the cytoadhesion complex. This made it possible to create a map of proteins that FIKK4.1 is likely to modify to build and control the cytoadhesion complex. Further experiments examined what happened to these surrounding proteins when FIKK4.1 was inactivated. This revealed that some protein targets of FIKK4.1 become either more or less accessible to other enzymes that attach a molecule known as biotin to proteins. This could be a result of structural changes in the cytoadhesion complex that are normally regulated by the FIKK4.1 kinase. In the future, PerTurboID may be useful to study how genetics or environmental changes affect other groups of proteins within specific environments inside cells, such as protein complexes required for DNA replication or cell division, or assembly of temporal structures required for cell movement.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Parásitos/metabolismo , Proteínas Protozoarias/metabolismo , Plasmodium falciparum/metabolismo , Fosfotransferasas/genética , Eritrocitos/parasitología , Péptidos/metabolismo , Malaria Falciparum/parasitología
19.
bioRxiv ; 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-36712004

RESUMEN

Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.

20.
Elife ; 122023 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933960

RESUMEN

Apicomplexan parasites use Ca2+-regulated exocytosis to secrete essential virulence factors from specialized organelles called micronemes. Ca2+-dependent protein kinases (CDPKs) are required for microneme exocytosis; however, the molecular events that regulate trafficking and fusion of micronemes with the plasma membrane remain unresolved. Here, we combine sub-minute resolution phosphoproteomics and bio-orthogonal labeling of kinase substrates in Toxoplasma gondii to identify 163 proteins phosphorylated in a CDPK1-dependent manner. In addition to known regulators of secretion, we identify uncharacterized targets with predicted functions across signaling, gene expression, trafficking, metabolism, and ion homeostasis. One of the CDPK1 targets is a putative HOOK activating adaptor. In other eukaryotes, HOOK homologs form the FHF complex with FTS and FHIP to activate dynein-mediated trafficking of endosomes along microtubules. We show the FHF complex is partially conserved in T. gondii, consisting of HOOK, an FTS homolog, and two parasite-specific proteins (TGGT1_306920 and TGGT1_316650). CDPK1 kinase activity and HOOK are required for the rapid apical trafficking of micronemes as parasites initiate motility. Moreover, parasites lacking HOOK or FTS display impaired microneme protein secretion, leading to a block in the invasion of host cells. Taken together, our work provides a comprehensive catalog of CDPK1 targets and reveals how vesicular trafficking has been tuned to support a parasitic lifestyle.


Asunto(s)
Parásitos , Toxoplasma , Animales , Toxoplasma/metabolismo , Micronema , Parásitos/metabolismo , Orgánulos/metabolismo , Endosomas/metabolismo , Exocitosis , Proteínas Protozoarias/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda