Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35101979

RESUMEN

The secondary active transporter CitS shuttles citrate across the cytoplasmic membrane of gram-negative bacteria by coupling substrate translocation to the transport of two Na+ ions. Static crystal structures suggest an elevator type of transport mechanism with two states: up and down. However, no dynamic measurements have been performed to substantiate this assumption. Here, we use high-speed atomic force microscopy for real-time visualization of the transport cycle at the level of single transporters. Unexpectedly, instead of a bimodal height distribution for the up and down states, the experiments reveal movements between three distinguishable states, with protrusions of ∼0.5 nm, ∼1.0 nm, and ∼1.6 nm above the membrane, respectively. Furthermore, the real-time measurements show that the individual protomers of the CitS dimer move up and down independently. A three-state elevator model of independently operating protomers resembles the mechanism proposed for the aspartate transporter GltPh Since CitS and GltPh are structurally unrelated, we conclude that the three-state elevators have evolved independently.


Asunto(s)
Membrana Celular , Proteínas de Escherichia coli , Escherichia coli , Microscopía de Fuerza Atómica , Simportadores , Membrana Celular/genética , Membrana Celular/metabolismo , Membrana Celular/ultraestructura , Escherichia coli/genética , Escherichia coli/metabolismo , Escherichia coli/ultraestructura , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/ultraestructura , Simportadores/genética , Simportadores/metabolismo , Simportadores/ultraestructura
2.
Neurochem Res ; 47(1): 163-175, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33565025

RESUMEN

Excitatory amino acid transporters (EAAT) play a key role in glutamatergic synaptic communication. Driven by transmembrane cation gradients, these transporters catalyze the reuptake of glutamate from the synaptic cleft once this neurotransmitter has been utilized for signaling. Two decades ago, pioneering studies in the Kanner lab identified a conserved methionine within the transmembrane domain as key for substrate turnover rate and specificity; later structural work, particularly for the prokaryotic homologs GltPh and GltTk, revealed that this methionine is involved in the coordination of one of the three Na+ ions that are co-transported with the substrate. Albeit extremely atypical, the existence of this interaction is consistent with biophysical analyses of GltPh showing that mutations of this methionine diminish the binding cooperativity between substrates and Na+. It has been unclear, however, whether this intriguing methionine influences the thermodynamics of the transport reaction, i.e., its substrate:ion stoichiometry, or whether it simply fosters a specific kinetics in the binding reaction, which, while influential for the turnover rate, do not fundamentally explain the ion-coupling mechanism of this class of transporters. Here, studies of GltTk using experimental and computational methods independently arrive at the conclusion that the latter hypothesis is the most plausible, and lay the groundwork for future efforts to uncover the underlying mechanism.


Asunto(s)
Metionina , Sodio , Transporte Biológico , Iones/metabolismo , Metionina/metabolismo , Proteínas de Transporte de Neurotransmisores/metabolismo
3.
J Am Chem Soc ; 143(3): 1513-1520, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33449695

RESUMEN

Photopharmacology addresses the challenge of drug selectivity and side effects through creation of photoresponsive molecules activated with light with high spatiotemporal precision. This is achieved through incorporation of molecular photoswitches and photocages into the pharmacophore. However, the structural basis for the light-induced modulation of inhibitory potency in general is still missing, which poses a major design challenge for this emerging field of research. Here we solved crystal structures of the glutamate transporter homologue GltTk in complex with photoresponsive transport inhibitors-azobenzene derivative of TBOA (both in trans and cis configuration) and with the photocaged compound ONB-hydroxyaspartate. The essential role of glutamate transporters in the functioning of the central nervous system renders them potential therapeutic targets in the treatment of neurodegenerative diseases. The obtained structures provide a clear structural insight into the origins of photocontrol in photopharmacology and lay the foundation for application of photocontrolled ligands to study the transporter dynamics by using time-resolved X-ray crystallography.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Compuestos Azo/metabolismo , Sistema de Transporte de Aminoácidos X-AG/química , Ácido Aspártico/efectos de la radiación , Compuestos Azo/química , Compuestos Azo/efectos de la radiación , Cristalografía por Rayos X , Unión Proteica , Estereoisomerismo , Thermococcus/química , Rayos Ultravioleta
5.
Microb Cell Fact ; 16(1): 226, 2017 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-29246156

RESUMEN

BACKGROUND: To optimize the production of membrane and secretory proteins in Escherichia coli, it is critical to harmonize the expression rates of the genes encoding these proteins with the capacity of their biogenesis machineries. Therefore, we engineered the Lemo21(DE3) strain, which is derived from the T7 RNA polymerase-based BL21(DE3) protein production strain. In Lemo21(DE3), the T7 RNA polymerase activity can be modulated by the controlled co-production of its natural inhibitor T7 lysozyme. This setup enables to precisely tune target gene expression rates in Lemo21(DE3). The t7lys gene is expressed from the pLemo plasmid using the titratable rhamnose promoter. A disadvantage of the Lemo21(DE3) setup is that the system is based on two plasmids, a T7 expression vector and pLemo. The aim of this study was to simplify the Lemo21(DE3) setup by incorporating the key elements of pLemo in a standard T7-based expression vector. RESULTS: By incorporating the gene encoding the T7 lysozyme under control of the rhamnose promoter in a standard T7-based expression vector, pReX was created (ReX stands for Regulated gene eXpression). For two model membrane proteins and a model secretory protein we show that the optimized production yields obtained with the pReX expression vector in BL21(DE3) are similar to the ones obtained with Lemo21(DE3) using a standard T7 expression vector. For another secretory protein, a c-type cytochrome, we show that pReX, in contrast to Lemo21(DE3), enables the use of a helper plasmid that is required for the maturation and hence the production of this heme c protein. CONCLUSIONS: Here, we created pReX, a T7-based expression vector that contains the gene encoding the T7 lysozyme under control of the rhamnose promoter. pReX enables regulated T7-based target gene expression using only one plasmid. We show that with pReX the production of membrane and secretory proteins can be readily optimized. Importantly, pReX facilitates the use of helper plasmids. Furthermore, the use of pReX is not restricted to BL21(DE3), but it can in principle be used in any T7 RNAP-based strain. Thus, pReX is a versatile alternative to Lemo21(DE3).


Asunto(s)
ARN Polimerasas Dirigidas por ADN/metabolismo , Escherichia coli/genética , Expresión Génica , Vectores Genéticos/genética , Proteínas de la Membrana/genética , Proteínas Virales/metabolismo , Clonación Molecular , ARN Polimerasas Dirigidas por ADN/genética , Escherichia coli/metabolismo , Vectores Genéticos/metabolismo , Proteínas de la Membrana/metabolismo , N-Acetil Muramoil-L-Alanina Amidasa/genética , N-Acetil Muramoil-L-Alanina Amidasa/metabolismo , Plásmidos/genética , Plásmidos/metabolismo , Regiones Promotoras Genéticas , Transporte de Proteínas , Proteínas Virales/genética
6.
Appl Microbiol Biotechnol ; 101(7): 2831-2842, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27966048

RESUMEN

Cofactor F420, a 5-deazaflavin involved in obligatory hydride transfer, is widely distributed among archaeal methanogens and actinomycetes. Owing to the low redox potential of the cofactor, F420-dependent enzymes play a pivotal role in central catabolic pathways and xenobiotic degradation processes in these organisms. A physiologically essential deazaflavoenzyme is the F420-dependent glucose-6-phosphate dehydrogenase (FGD), which catalyzes the reaction F420 + glucose-6-phosphate → F420H2 + 6-phospho-gluconolactone. Thereby, FGDs generate the reduced F420 cofactor required for numerous F420H2-dependent reductases, involved e.g., in the bioreductive activation of the antitubercular prodrugs pretomanid and delamanid. We report here the identification, production, and characterization of three FGDs from Rhodococcus jostii RHA1 (Rh-FGDs), being the first experimental evidence of F420-dependent enzymes in this bacterium. The crystal structure of Rh-FGD1 has also been determined at 1.5 Å resolution, showing a high similarity with FGD from Mycobacterium tuberculosis (Mtb) (Mtb-FGD1). The cofactor-binding pocket and active-site catalytic residues are largely conserved in Rh-FGD1 compared with Mtb-FGD1, except for an extremely flexible insertion region capping the active site at the C-terminal end of the TIM-barrel, which also markedly differs from other structurally related proteins. The role of the three positively charged residues (Lys197, Lys258, and Arg282) constituting the binding site of the substrate phosphate moiety was experimentally corroborated by means of mutagenesis study. The biochemical and structural data presented here provide the first step towards tailoring Rh-FGD1 into a more economical biocatalyst, e.g., an F420-dependent glucose dehydrogenase that requires a cheaper cosubstrate and can better match the demands for the growing applications of F420H2-dependent reductases in industry and bioremediation.


Asunto(s)
Flavinas/metabolismo , Glucosafosfato Deshidrogenasa/química , Glucosafosfato Deshidrogenasa/metabolismo , Rhodococcus/enzimología , Riboflavina/análogos & derivados , Sitios de Unión , Biocatálisis , Biodegradación Ambiental , Dominio Catalítico , Cristalización , Cristalografía por Rayos X , Escherichia coli/genética , Glucosa-6-Fosfato/metabolismo , Glucosafosfato Deshidrogenasa/genética , Glucosafosfato Deshidrogenasa/aislamiento & purificación , Microbiología Industrial/métodos , Cinética , Modelos Moleculares , Estructura Molecular , Mycobacterium tuberculosis/enzimología , Oxidorreductasas/metabolismo , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Riboflavina/metabolismo , Especificidad por Sustrato
7.
Commun Biol ; 4(1): 751, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-34140623

RESUMEN

It is well-established that the secondary active transporters GltTk and GltPh catalyze coupled uptake of aspartate and three sodium ions, but insight in the kinetic mechanism of transport is fragmentary. Here, we systematically measured aspartate uptake rates in proteoliposomes containing purified GltTk, and derived the rate equation for a mechanism in which two sodium ions bind before and another after aspartate. Re-analysis of existing data on GltPh using this equation allowed for determination of the turnover number (0.14 s-1), without the need for error-prone protein quantification. To overcome the complication that purified transporters may adopt right-side-out or inside-out membrane orientations upon reconstitution, thereby confounding the kinetic analysis, we employed a rapid method using synthetic nanobodies to inactivate one population. Oppositely oriented GltTk proteins showed the same transport kinetics, consistent with the use of an identical gating element on both sides of the membrane. Our work underlines the value of bona fide transport experiments to reveal mechanistic features of Na+-aspartate symport that cannot be observed in detergent solution. Combined with previous pre-equilibrium binding studies, a full kinetic mechanism of structurally characterized aspartate transporters of the SLC1A family is now emerging.


Asunto(s)
Ácido Aspártico/metabolismo , Transporte Biológico/fisiología , Transportador 3 de Aminoácidos Excitadores/metabolismo , Sodio/metabolismo , Transportador 3 de Aminoácidos Excitadores/genética , Proteolípidos/metabolismo , Pyrococcus horikoshii/genética , Pyrococcus horikoshii/metabolismo , Thermococcus/genética , Thermococcus/metabolismo
8.
Elife ; 82019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30969168

RESUMEN

Mammalian glutamate transporters are crucial players in neuronal communication as they perform neurotransmitter reuptake from the synaptic cleft. Besides L-glutamate and L-aspartate, they also recognize D-aspartate, which might participate in mammalian neurotransmission and/or neuromodulation. Much of the mechanistic insight in glutamate transport comes from studies of the archeal homologs GltPh from Pyrococcus horikoshii and GltTk from Thermococcus kodakarensis. Here, we show that GltTk transports D-aspartate with identical Na+: substrate coupling stoichiometry as L-aspartate, and that the affinities (Kd and Km) for the two substrates are similar. We determined a crystal structure of GltTk with bound D-aspartate at 2.8 Å resolution. Comparison of the L- and D-aspartate bound GltTk structures revealed that D-aspartate is accommodated with only minor rearrangements in the structure of the binding site. The structure explains how the geometrically different molecules L- and D-aspartate are recognized and transported by the protein in the same way.


Asunto(s)
Sistema de Transporte de Aminoácidos X-AG/química , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Ácido D-Aspártico/metabolismo , Thermococcus/enzimología , Transporte Biológico , Cristalografía por Rayos X , Unión Proteica , Conformación Proteica , Sodio/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda