RESUMEN
Casein kinase 1δ (CK1δ) controls essential biological processes including circadian rhythms and wingless-related integration site (Wnt) signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ1 and δ2, are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C termini (XCT), but with marked changes in potential phosphorylation sites. Here, we test whether the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and hydrogen/deuterium exchange mass spectrometry, we show that the δ1 XCT is preferentially phosphorylated by the kinase and the δ1 tail makes more extensive interactions across the kinase domain. Mutation of δ1-specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in the circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion-binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ. These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
Asunto(s)
Quinasa Idelta de la Caseína , Fosforilación , Humanos , Quinasa Idelta de la Caseína/metabolismo , Quinasa Idelta de la Caseína/genética , Quinasa Idelta de la Caseína/antagonistas & inhibidores , Ritmo Circadiano , Animales , Quinasa de la Caseína I/metabolismo , Quinasa de la Caseína I/genética , Células HEK293 , Ratones , Dominios Proteicos , MutaciónRESUMEN
The basic helix-loop-helix PAS domain (bHLH-PAS) transcription factor CLOCK:BMAL1 (brain and muscle Arnt-like protein 1) sits at the core of the mammalian circadian transcription/translation feedback loop. Precise control of CLOCK:BMAL1 activity by coactivators and repressors establishes the â¼24-h periodicity of gene expression. Formation of a repressive complex, defined by the core clock proteins cryptochrome 1 (CRY1):CLOCK:BMAL1, plays an important role controlling the switch from repression to activation each day. Here we show that CRY1 binds directly to the PAS domain core of CLOCK:BMAL1, driven primarily by interaction with the CLOCK PAS-B domain. Integrative modeling and solution X-ray scattering studies unambiguously position a key loop of the CLOCK PAS-B domain in the secondary pocket of CRY1, analogous to the antenna chromophore-binding pocket of photolyase. CRY1 docks onto the transcription factor alongside the PAS domains, extending above the DNA-binding bHLH domain. Single point mutations at the interface on either CRY1 or CLOCK disrupt formation of the ternary complex, highlighting the importance of this interface for direct regulation of CLOCK:BMAL1 activity by CRY1.
Asunto(s)
Factores de Transcripción ARNTL/genética , Proteínas CLOCK/genética , Relojes Circadianos/genética , Criptocromos/genética , Factores de Transcripción ARNTL/química , Factores de Transcripción ARNTL/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión/genética , Proteínas CLOCK/química , Proteínas CLOCK/metabolismo , Criptocromos/química , Criptocromos/metabolismo , Cristalografía por Rayos X , Ratones , Modelos Moleculares , Mutación , Unión Proteica , Dominios Proteicos , Células Sf9 , SpodopteraRESUMEN
Casein kinase 1 δ (CK1δ) controls essential biological processes including circadian rhythms and Wnt signaling, but how its activity is regulated is not well understood. CK1δ is inhibited by autophosphorylation of its intrinsically disordered C-terminal tail. Two CK1 splice variants, δ 1 and δ 2 , are known to have very different effects on circadian rhythms. These variants differ only in the last 16 residues of the tail, referred to as the extreme C-termini (XCT), but with marked changes in potential phosphorylation sites. Here we test if the XCT of these variants have different effects in autoinhibition of the kinase. Using NMR and HDX-MS, we show that the δ 1 XCT is preferentially phosphorylated by the kinase and the δ 1 tail makes more extensive interactions across the kinase domain. Mutation of δ1 -specific XCT phosphorylation sites increases kinase activity both in vitro and in cells and leads to changes in circadian period, similar to what is reported in vivo. Mechanistically, loss of the phosphorylation sites in XCT disrupts tail interaction with the kinase domain. δ1 autoinhibition relies on conserved anion binding sites around the CK1 active site, demonstrating a common mode of product inhibition of CK1δ . These findings demonstrate how a phosphorylation cycle controls the activity of this essential kinase.
RESUMEN
The MuvB complex recruits transcription factors to activate or repress genes with cell cycle-dependent expression patterns. MuvB contains the DNA-binding protein LIN54, which directs the complex to promoter cell cycle genes homology region (CHR) elements. Here we characterize the DNA-binding properties of LIN54 and describe the structural basis for recognition of a CHR sequence. We biochemically define the CHR consensus as TTYRAA and determine that two tandem cysteine rich regions are required for high-affinity DNA association. A crystal structure of the LIN54 DNA-binding domain in complex with a CHR sequence reveals that sequence specificity is conferred by two tyrosine residues, which insert into the minor groove of the DNA duplex. We demonstrate that this unique tyrosine-mediated DNA binding is necessary for MuvB recruitment to target promoters. Our results suggest a model in which MuvB binds near transcription start sites and plays a role in positioning downstream nucleosomes.