Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Nature ; 591(7850): 431-437, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33505021

RESUMEN

Lysosomes have fundamental physiological roles and have previously been implicated in Parkinson's disease1-5. However, how extracellular growth factors communicate with intracellular organelles to control lysosomal function is not well understood. Here we report a lysosomal K+ channel complex that is activated by growth factors and gated by protein kinase B (AKT) that we term lysoKGF. LysoKGF consists of a pore-forming protein TMEM175 and AKT: TMEM175 is opened by conformational changes in, but not the catalytic activity of, AKT. The minor allele at rs34311866, a common variant in TMEM175, is associated with an increased risk of developing Parkinson's disease and reduces channel currents. Reduction in lysoKGF function predisposes neurons to stress-induced damage and accelerates the accumulation of pathological α-synuclein. By contrast, the minor allele at rs3488217-another common variant of TMEM175, which is associated with a decreased risk of developing Parkinson's disease-produces a gain-of-function in lysoKGF during cell starvation, and enables neuronal resistance to damage. Deficiency in TMEM175 leads to a loss of dopaminergic neurons and impairment in motor function in mice, and a TMEM175 loss-of-function variant is nominally associated with accelerated rates of cognitive and motor decline in humans with Parkinson's disease. Together, our studies uncover a pathway by which extracellular growth factors regulate intracellular organelle function, and establish a targetable mechanism by which common variants of TMEM175 confer risk for Parkinson's disease.


Asunto(s)
Péptidos y Proteínas de Señalización Intercelular/metabolismo , Lisosomas/metabolismo , Complejos Multiproteicos/metabolismo , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Canales de Potasio/metabolismo , Potasio/metabolismo , Animales , Biocatálisis , Neuronas Dopaminérgicas/metabolismo , Femenino , Mutación con Ganancia de Función , Células HEK293 , Humanos , Mutación con Pérdida de Función , Masculino , Ratones , Ratones Noqueados , Destreza Motora , Complejos Multiproteicos/química , Complejos Multiproteicos/deficiencia , Complejos Multiproteicos/genética , Enfermedad de Parkinson/genética , Canales de Potasio/química , Canales de Potasio/deficiencia , Canales de Potasio/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , alfa-Sinucleína/metabolismo
2.
Mov Disord ; 39(6): 1065-1070, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38610104

RESUMEN

BACKGROUND: The GPNMB single-nucleotide polymorphism rs199347 and GBA1 variants both associate with Lewy body disorder (LBD) risk. GPNMB encodes glycoprotein nonmetastatic melanoma protein B (GPNMB), a biomarker for GBA1-associated Gaucher's disease. OBJECTIVE: The aim of this study was to determine whether GPNMB levels (1) differ in LBD with and without GBA1 variants and (2) associate with rs199347 genotype. METHODS: We quantified GPNMB levels in plasma and cerebrospinal fluid (CSF) from 124 individuals with LBD with one GBA1 variant (121 plasma, 14 CSF), 631 individuals with LBD without GBA1 variants (626 plasma, 41 CSF), 9 neurologically normal individuals with one GBA1 variant (plasma), and 2 individuals with two GBA1 variants (plasma). We tested for associations between GPNMB levels and rs199347 or GBA1 status. RESULTS: GPNMB levels associate with rs199347 genotype in plasma (P = 0.022) and CSF (P = 0.007), but not with GBA1 status. CONCLUSIONS: rs199347 is a protein quantitative trait locus for GPNMB. GPNMB levels are unaltered in individuals carrying one GBA1 variant. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Biomarcadores , Glucosilceramidasa , Enfermedad por Cuerpos de Lewy , Glicoproteínas de Membrana , Polimorfismo de Nucleótido Simple , Humanos , Femenino , Glucosilceramidasa/genética , Masculino , Enfermedad por Cuerpos de Lewy/genética , Enfermedad por Cuerpos de Lewy/líquido cefalorraquídeo , Enfermedad por Cuerpos de Lewy/sangre , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/líquido cefalorraquídeo , Anciano , Persona de Mediana Edad , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Anciano de 80 o más Años , Genotipo , Heterocigoto , Enfermedad de Gaucher/genética , Enfermedad de Gaucher/sangre , Enfermedad de Gaucher/líquido cefalorraquídeo
3.
Alzheimers Dement ; 20(6): 3889-3905, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38644682

RESUMEN

INTRODUCTION: We investigate pathological correlates of plasma phosphorylated tau 181 (p-tau181), glial fibrillary acidic protein (GFAP), and neurofilament light chain (NfL) across a clinically diverse spectrum of neurodegenerative disease, including normal cognition (NormCog) and impaired cognition (ImpCog). METHODS: Participants were NormCog (n = 132) and ImpCog (n = 461), with confirmed ß-amyloid (Aß+/-) status (cerebrospinal fluid, positron emission tomography, autopsy) and single molecule array plasma measurements. Logistic regression and receiver operating characteristic (ROC) area under the curve (AUC) tested how combining plasma analytes discriminated Aß+ from Aß-. Survival analyses tested time to clinical dementia rating (global CDR) progression. RESULTS: Multivariable models (p-tau+GFAP+NfL) had the best performance to detect Aß+ in NormCog (ROCAUC = 0.87) and ImpCog (ROCAUC = 0.87). Survival analyses demonstrated that higher NfL best predicted faster CDR progression for both Aß+ (hazard ratio [HR] = 2.94; p = 8.1e-06) and Aß- individuals (HR = 3.11; p = 2.6e-09). DISCUSSION: Combining plasma biomarkers can optimize detection of Alzheimer's disease (AD) pathology across cognitively normal and clinically diverse neurodegenerative disease. HIGHLIGHTS: Participants were clinically heterogeneous, with autopsy- or biomarker-confirmed Aß. Combining plasma p-tau181, GFAP, and NfL improved diagnostic accuracy for Aß status. Diagnosis by plasma biomarkers is more accurate in amnestic AD than nonamnestic AD. Plasma analytes show independent associations with tau PET and post mortem Aß/tau. Plasma NfL predicted longitudinal cognitive decline in both Aß+ and Aß- individuals.


Asunto(s)
Péptidos beta-Amiloides , Biomarcadores , Enfermedades Neurodegenerativas , Proteínas de Neurofilamentos , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Biomarcadores/sangre , Femenino , Masculino , Proteínas tau/sangre , Proteínas tau/líquido cefalorraquídeo , Anciano , Proteínas de Neurofilamentos/sangre , Enfermedades Neurodegenerativas/sangre , Enfermedades Neurodegenerativas/diagnóstico , Péptidos beta-Amiloides/sangre , Proteína Ácida Fibrilar de la Glía/sangre , Progresión de la Enfermedad , Disfunción Cognitiva/sangre , Disfunción Cognitiva/diagnóstico , Persona de Mediana Edad , Fosforilación , Cognición/fisiología
4.
Clin Chem ; 69(11): 1247-1259, 2023 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-37725909

RESUMEN

BACKGROUND: Development of validated biomarkers to detect early Alzheimer disease (AD) neuropathology is needed for therapeutic AD trials. Abnormal concentrations of "core" AD biomarkers, cerebrospinal fluid (CSF) amyloid beta1-42, total tau, and phosphorylated tau correlate well with neuroimaging biomarkers and autopsy findings. Nevertheless, given the limitations of established CSF and neuroimaging biomarkers, accelerated development of blood-based AD biomarkers is underway. CONTENT: Here we describe the clinical significance of CSF and plasma AD biomarkers to detect disease pathology throughout the Alzheimer continuum and correlate with imaging biomarkers. Use of the AT(N) classification by CSF and imaging biomarkers provides a more objective biologically based diagnosis of AD than clinical diagnosis alone. Significant progress in measuring CSF AD biomarkers using extensively validated highly automated assay systems has facilitated their transition from research use only to approved in vitro diagnostics tests for clinical use. We summarize development of plasma AD biomarkers as screening tools for enrollment and monitoring participants in therapeutic trials and ultimately in clinical care. Finally, we discuss the challenges for AD biomarkers use in clinical trials and precision medicine, emphasizing the possible ethnocultural differences in the levels of AD biomarkers. SUMMARY: CSF AD biomarker measurements using fully automated analytical platforms is possible. Building on this experience, validated blood-based biomarker tests are being implemented on highly automated immunoassay and mass spectrometry platforms. The progress made developing analytically and clinically validated plasma AD biomarkers within the AT(N) classification scheme can accelerate use of AD biomarkers in therapeutic trials and routine clinical practice.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Enfermedad de Alzheimer/diagnóstico , Proteínas tau/líquido cefalorraquídeo , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores , Inmunoensayo , Fragmentos de Péptidos/líquido cefalorraquídeo
5.
Ann Neurol ; 92(2): 255-269, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35593028

RESUMEN

OBJECTIVE: Using a multi-cohort, discovery-replication-validation design, we sought new plasma biomarkers that predict which individuals with Parkinson's disease (PD) will experience cognitive decline. METHODS: In 108 discovery cohort PD individuals and 83 replication cohort PD individuals, we measured 940 plasma proteins on an aptamer-based platform. Using proteins associated with subsequent cognitive decline in both cohorts, we trained a logistic regression model to predict which patients with PD showed fast (> = 1 point drop/year on Montreal Cognitive Assessment [MoCA]) versus slow (< 1 point drop/year on MoCA) cognitive decline in the discovery cohort, testing it in the replication cohort. We developed alternate assays for the top 3 proteins and confirmed their ability to predict cognitive decline - defined by change in MoCA or development of incident mild cognitive impairment (MCI) or dementia - in a validation cohort of 118 individuals with PD. We investigated the top plasma biomarker for causal influence by Mendelian randomization (MR). RESULTS: A model with only 3 proteins (melanoma inhibitory activity protein [MIA], C-reactive protein [CRP], and albumin) separated fast versus slow cognitive decline subgroups with an area under the curve (AUC) of 0.80 in the validation cohort. The individuals with PD in the validation cohort in the top quartile of risk for cognitive decline based on this model were 4.4 times more likely to develop incident MCI or dementia than those in the lowest quartile. Genotypes at MIA single nucleotide polymorphism (SNP) rs2233154 associated with MIA levels and cognitive decline, providing evidence for MIA's causal influence. CONCLUSIONS: An easily obtained plasma-based predictor identifies individuals with PD at risk for cognitive decline. MIA may participate causally in development of cognitive decline. ANN NEUROL 2022;92:255-269.


Asunto(s)
Disfunción Cognitiva , Demencia , Enfermedad de Parkinson , Albúminas , Biomarcadores , Proteína C-Reactiva/química , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Demencia/complicaciones , Proteínas de la Matriz Extracelular/sangre , Humanos , Proteínas de Neoplasias/sangre , Pruebas Neuropsicológicas , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/psicología , Albúmina Sérica/química
6.
Ann Neurol ; 92(5): 807-818, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35877814

RESUMEN

OBJECTIVE: Plasma phosphorylated tau (p-tau181 ) is reliably elevated in Alzheimer's disease (AD), but less explored is its specificity relative to other neurodegenerative conditions. Here, we find novel evidence that plasma p-tau181 is elevated in amyotrophic lateral sclerosis (ALS), a neurodegenerative condition typically lacking tau pathology. We performed a detailed evaluation to identify the clinical correlates of elevated p-tau181 in ALS. METHODS: Patients were clinically or pathologically diagnosed with ALS (n = 130) or AD (n = 79), or were healthy non-impaired controls (n = 26). Receiver operating characteristic (ROC) curves were analyzed and area under the curve (AUC) was used to discriminate AD from ALS. Within ALS, Mann-Whitney-Wilcoxon tests compared analytes by presence/absence of upper motor neuron and lower motor neuron (LMN) signs. Spearman correlations tested associations between plasma p-tau181 and postmortem neuron loss. RESULTS: A Wilcoxon test showed plasma p-tau181 was higher in ALS than controls (W = 2,600, p = 0.000015), and ROC analyses showed plasma p-tau181 poorly discriminated AD and ALS (AUC = 0.60). In ALS, elevated plasma p-tau181 was associated with LMN signs in cervical (W = 827, p = 0.0072), thoracic (W = 469, p = 0.00025), and lumbosacral regions (W = 851, p = 0.0000029). In support of LMN findings, plasma p-tau181 was associated with neuron loss in the spinal cord (rho = 0.46, p = 0.017), but not in the motor cortex (p = 0.41). Cerebrospinal spinal fluid p-tau181 and plasma neurofilament light chain were included as reference analytes, and demonstrate specificity of findings. INTERPRETATION: We found strong evidence that plasma p-tau181 is elevated in ALS and may be a novel marker specific to LMN dysfunction. ANN NEUROL 2022;92:807-818.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Humanos , Esclerosis Amiotrófica Lateral/diagnóstico , Proteínas tau , Enfermedad de Alzheimer/patología , Curva ROC , Área Bajo la Curva , Biomarcadores , Degeneración Nerviosa
7.
Acta Neuropathol ; 143(1): 15-31, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34854996

RESUMEN

Limbic-predominant age-related TDP-43 encephalopathy (LATE) is characterized by the accumulation of TAR-DNA-binding protein 43 (TDP-43) aggregates in older adults. LATE coexists with Lewy body disease (LBD) as well as other neuropathological changes including Alzheimer's disease (AD). We aimed to identify the pathological, clinical, and genetic characteristics of LATE in LBD (LATE-LBD) by comparing it with LATE in AD (LATE-AD), LATE with mixed pathology of LBD and AD (LATE-LBD + AD), and LATE alone (Pure LATE). We analyzed four cohorts of autopsy-confirmed LBD (n = 313), AD (n = 282), LBD + AD (n = 355), and aging (n = 111). We assessed the association of LATE with patient profiles including LBD subtype and AD neuropathologic change (ADNC). We studied the morphological and distributional differences between LATE-LBD and LATE-AD. By frequency analysis, we staged LATE-LBD and examined the association with cognitive impairment and genetic risk factors. Demographic analysis showed LATE associated with age in all four cohorts and the frequency of LATE was the highest in LBD + AD followed by AD, LBD, and Aging. LBD subtype and ADNC associated with LATE in LBD or AD but not in LBD + AD. Pathological analysis revealed that the hippocampal distribution of LATE was different between LATE-LBD and LATE-AD: neuronal cytoplasmic inclusions were more frequent in cornu ammonis 3 (CA3) in LATE-LBD compared to LATE-AD and abundant fine neurites composed of C-terminal truncated TDP-43 were found mainly in CA2 to subiculum in LATE-LBD, which were not as numerous in LATE-AD. Some of these fine neurites colocalized with phosphorylated α-synuclein. LATE-LBD staging showed LATE neuropathological changes spread in the dentate gyrus and brainstem earlier than in LATE-AD. The presence and prevalence of LATE in LBD associated with cognitive impairment independent of either LBD subtype or ADNC; LATE-LBD stage also associated with the genetic risk variants of TMEM106B rs1990622 and GRN rs5848. These data highlight clinicopathological and genetic features of LATE-LBD.


Asunto(s)
Envejecimiento/patología , Encéfalo/patología , Enfermedad por Cuerpos de Lewy/patología , Proteinopatías TDP-43/patología , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/complicaciones , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/complicaciones , Enfermedad por Cuerpos de Lewy/genética , Masculino , Persona de Mediana Edad , Proteinopatías TDP-43/complicaciones , Proteinopatías TDP-43/genética
9.
Telemed J E Health ; 28(3): 374-383, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34077285

RESUMEN

Introduction: Teleneurology has become widely adopted during severe acute respiratory syndrome coronavirus 2 pandemic. However, provider impressions about the teleneurology experience are not well described. Methods: A novel questionnaire was developed to collect provider impressions about video teleneurology encounters. All providers in the University of Pennsylvania Health System (UPHS) Neurology Department (N = 162) were asked to complete a questionnaire after each video teleneurology patient encounter between April and August 2020. Individual patient and encounter-level data were extracted from the electronic medical record. Results: One thousand six hundred three surveys were completed by 55 providers (response rate of 10.12%). The history obtained and the ability to connect with the patient were considered the same or better than an in-person visit in almost all encounters. The quality of the physician-patient relationship was good or excellent in 93%, while the overall experience was the same as an in-person visit in 73% of visits and better in 12%. Sixty-eight percent of respondents reported that none of the elements of the neurological examination if performed in person would have changed the assessment and plan. Assessment of the visit as the same or better increased from 83% in April to 89% in July and 95% in August. Headache (91%), multiple sclerosis and neuroimmunology (96%), and movement disorder (89%) providers had the highest proportion of ratings of same or better overall experience and neuromuscular providers the lowest (60%). Conclusions: Provider impressions about the teleneurology history, examination, and provider-patient relationship are favorable in the majority of responses. Important differences emerge between provider specialty and visit characteristics groups.


Asunto(s)
COVID-19 , Neurología , Telemedicina , COVID-19/epidemiología , Humanos , Pandemias , SARS-CoV-2
10.
Mov Disord ; 36(12): 2945-2950, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34480363

RESUMEN

BACKGROUND: Neurofilament light chain protein (NfL) is a promising biomarker of neurodegeneration. OBJECTIVES: To determine whether plasma and CSF NfL (1) associate with motor or cognitive status in Parkinson's disease (PD) and (2) predict future motor or cognitive decline in PD. METHODS: Six hundred and fifteen participants with neurodegenerative diseases, including 152 PD and 200 healthy control participants, provided a plasma and/or cerebrospinal fluid (CSF) NfL sample. Diagnostic groups were compared using the Kruskal-Wallis rank test. Within PD, cross-sectional associations between NfL and Unified Parkinson's Disease Rating Scale Part III (UPDRS-III) and Mattis Dementia Rating Scale (DRS-2) scores were assessed by linear regression; longitudinal analyses were performed using linear mixed-effects models and Cox regression. RESULTS: Plasma and CSF NfL levels correlated substantially (Spearman r = 0.64, P < 0.001); NfL was highest in neurocognitive disorders. PD participants with high plasma NfL were more likely to develop incident cognitive impairment (HR 5.34, P = 0.005). CONCLUSIONS: Plasma NfL is a useful prognostic biomarker for PD, predicting clinical conversion to mild cognitive impairment or dementia. © 2021 International Parkinson and Movement Disorder Society.


Asunto(s)
Disfunción Cognitiva , Enfermedad de Parkinson , Biomarcadores/líquido cefalorraquídeo , Disfunción Cognitiva/líquido cefalorraquídeo , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Estudios Transversales , Progresión de la Enfermedad , Humanos , Filamentos Intermedios/metabolismo , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/diagnóstico
11.
Am J Med Genet A ; 185(10): 2922-2928, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34075706

RESUMEN

While genetics evaluation is increasingly utilized in adult neurology patients, its usage and efficacy are not well characterized. Here, we report our experience with 1461 consecutive patients evaluated in an adult neurogenetics clinic at a large academic medical center between January 2015 and March 2020. Of the 1461 patients evaluated, 1215 patients were referred for the purposes of identifying a genetic diagnosis for an undiagnosed condition, 90.5% of whom underwent genetic testing. The modalities of genetic testing utilized varied across referral diagnostic categories, including a range of utilization of whole exome sequencing (WES) as an initial test in 13.9% of neuromuscular patients to 52.9% in white matter disorder patients. The usage of WES increased over time, from 7.7% of initial testing in 2015 to a peak of 27.3% in 2019. Overall, genetic testing yielded a causal genetic diagnosis in 30.7% of patients. This yield was higher in certain referring diagnosis categories, such as neuromuscular (39.0%) and epilepsy (29.8%). Our study demonstrates that evaluation at an adult neurogenetics referral center can yield diagnoses in a substantial fraction of patients. Additional research will be needed to determine optimal genetic testing strategies and cost effectiveness of adult neurogenetics evaluation.


Asunto(s)
Pruebas Genéticas/tendencias , Enfermedades del Sistema Nervioso/diagnóstico , Adulto , Análisis Costo-Beneficio , Pruebas Diagnósticas de Rutina/tendencias , Exoma/genética , Femenino , Humanos , Masculino , Enfermedades del Sistema Nervioso/genética , Enfermedades del Sistema Nervioso/patología , Secuenciación del Exoma
12.
J Genet Couns ; 30(4): 974-983, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34265143

RESUMEN

The COVID-19 pandemic rapidly changed genetic counseling services across the United States. At the University of Pennsylvania (UPenn), a large academic hospital in an urban setting, nearly all genetic counseling (GC) visits for adult-onset disorders within the Department of Neurology were conducted via secure videoconferencing (telegenetics) or telephone between March and December 2020. Although telemedicine services have been steadily emerging, many clinical programs, including the neurogenetics program at UPenn, had not built infrastructure or widely utilized these services prior to the pandemic. Thus, little is known about patient attitudes toward receiving clinical GC services remotely. From May 18 to October 18, 2020, all individuals seen remotely for GC in adult neurology via telephone or telegenetics were surveyed about their satisfaction with telehealth GC (N = 142), with a response rate of 42% (N = 60/142). Telephone and telegenetics services were referred to as 'telehealth' in the surveys to capture patient perspectives on all remote GC services, though the majority (N = 49/60) of these visits were completed via telegenetics. Surveys included the modified telehealth usability questionnaire (MTUQ), genetic counseling satisfaction scale (GCSS), and novel questions about future telehealth use. Preliminary results suggest that patients were satisfied with receiving remote GC services in adult neurology, with most participants strongly agreeing to all items about satisfaction with telehealth. Just 2% of participants preferred only in-person visits in the future, but every participant was willing to consider using telehealth for future visits if their genetic counselor felt it was appropriate. Most participants preferred a hybrid model (73%), and some (25%) preferred only telehealth for future visits. Additionally, we found no differences in satisfaction with remote services based on visit type (initial vs. results disclosure) nor age. We conclude that remote GC is an acceptable method for the provision of services in adult neurology that is well-received by patients.


Asunto(s)
COVID-19 , Asesoramiento Genético , Neurología , Satisfacción del Paciente , Telemedicina , Adolescente , Adulto , Anciano , COVID-19/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Adulto Joven
13.
Int J Mol Sci ; 22(15)2021 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-34361012

RESUMEN

Loss-of-function mutations in the KV4.3 channel-encoding KCND3 gene are linked to neurodegenerative cerebellar ataxia. Patients suffering from neurodegeneration associated with iron deposition may also present with cerebellar ataxia. The mechanism underlying brain iron accumulation remains unclear. Here, we aim to ascertain the potential pathogenic role of KCND3 variant in iron accumulation-related cerebellar ataxia. We presented a patient with slowly progressive cerebellar ataxia, parkinsonism, cognitive impairment, and iron accumulation in the basal ganglia and the cerebellum. Whole exome sequencing analyses identified in the patient a heterozygous KCND3 c.1256G>A (p.R419H) variant predicted to be disease-causing by multiple bioinformatic analyses. In vitro biochemical and immunofluorescence examinations revealed that, compared to the human KV4.3 wild-type channel, the p.R419H variant exhibited normal protein abundance and subcellular localization pattern. Electrophysiological investigation, however, demonstrated that the KV4.3 p.R419H variant was associated with a dominant increase in potassium current amplitudes, as well as notable changes in voltage-dependent gating properties leading to enhanced potassium window current. These observations indicate that, in direct contrast with the loss-of-function KCND3 mutations previously reported in cerebellar ataxia patients, we identified a rare gain-of-function KCND3 variant that may expand the clinical and molecular spectra of neurodegenerative cerebellar disorders associated with brain iron accumulation.


Asunto(s)
Disfunción Cognitiva/genética , Mutación con Ganancia de Función , Hierro/metabolismo , Trastornos Parkinsonianos/genética , Canales de Potasio Shal/genética , Ataxias Espinocerebelosas/genética , Potenciales de Acción , Anciano , Encéfalo/metabolismo , Disfunción Cognitiva/patología , Células HEK293 , Humanos , Masculino , Trastornos Parkinsonianos/patología , Dominios Proteicos , Canales de Potasio Shal/química , Canales de Potasio Shal/metabolismo , Ataxias Espinocerebelosas/patología
14.
Ann Neurol ; 85(6): 801-811, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30973966

RESUMEN

OBJECTIVE: Common variants near TMEM106B associate with risk of developing frontotemporal dementia (FTD). Emerging evidence suggests a role for TMEM106B in neurodegenerative processes beyond FTD. We evaluate the effect of TMEM106B genotype on cognitive decline across multiple neurogenerative diseases. METHODS: We longitudinally followed 870 subjects with diagnoses of Parkinson disease (PD; n = 179), FTD (n = 179), Alzheimer disease (AD; n = 300), memory-predominant mild cognitive impairment (MCI; n = 75), or neurologically normal control subjects (NC; n = 137) at the University of Pennsylvania (UPenn). All participants had annual Mini-Mental State Examination (MMSE; median follow-up duration = 3.0 years) and were genotyped at TMEM106B index single nucleotide polymorphism rs1990622. Genotype effects on cognition were confirmed by extending analyses to additional cognitive instruments (Mattis Dementia Rating Scale-2 [DRS-2] and Montreal Cognitive Assessment [MoCA]) and to an international validation cohort (Parkinson's Progression Markers Initiative [PPMI], N = 371). RESULTS: The TMEM106B rs1990622T allele, linked to increased risk of FTD, associated with greater MMSE decline over time in PD subjects but not in AD or MCI subjects. For FTD subjects, rs1990622T associated with more rapid decrease in MMSE only under the minor-allele, rs1990622C , dominant model. Among PD patients, rs1990622T carriers from the UPenn cohort demonstrated more rapid longitudinal decline in DRS-2 scores. Finally, in the PPMI cohort, TMEM106B risk allele carriers demonstrated more rapid longitudinal decline in MoCA scores. INTERPRETATION: Irrespective of cognitive instrument or cohort assessed, TMEM106B acts as a genetic modifier for cognitive trajectory in PD. Our results implicate lysosomal dysfunction in the pathogenesis of cognitive decline in 2 different proteinopathies. ANN NEUROL 2019;85:801-811.


Asunto(s)
Cognición/fisiología , Disfunción Cognitiva/genética , Demencia Frontotemporal/genética , Proteínas de la Membrana/genética , Proteínas del Tejido Nervioso/genética , Enfermedad de Parkinson/genética , Anciano , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/psicología , Femenino , Estudios de Seguimiento , Demencia Frontotemporal/diagnóstico , Demencia Frontotemporal/psicología , Humanos , Estudios Longitudinales , Masculino , Pruebas de Estado Mental y Demencia , Persona de Mediana Edad , Pruebas Neuropsicológicas , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/psicología
15.
Acta Neuropathol ; 140(4): 449-461, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32749525

RESUMEN

Growing evidence suggests overlap between Alzheimer's disease (AD) and Parkinson's disease (PD) pathophysiology in a subset of patients. Indeed, 50-80% of autopsy cases with a primary clinicopathological diagnosis of Lewy body disease (LBD)-most commonly manifesting during life as PD-have concomitant amyloid-beta and tau pathology, the defining pathologies of AD. Here we evaluated common genetic variants in genome-wide association with AD as predictors of concomitant AD pathology in the brains of people with a primary clinicopathological diagnosis of PD or Dementia with Lewy Bodies (DLB), diseases both characterized by neuronal Lewy bodies. In the first stage of our study, 127 consecutive autopsy-confirmed cases of PD or DLB from a single center were assessed for AD neuropathological change (ADNC), and these same cases were genotyped at 20 single nucleotide polymorphisms (SNPs) found by genome-wide association study to associate with risk for AD. In these 127 training set individuals, we developed a logistic regression model predicting the presence of ADNC, using backward stepwise regression for model selection and tenfold cross-validation to estimate performance. The best-fit model generated a risk score for ADNC (ADNC-RS) based on age at disease onset and genotype at three SNPs (APOE, BIN1, and SORL1 loci), with an area under the receiver operating curve (AUC) of 0.751 in our training set. In the replication stage of our study, we assessed model performance in a separate test set of the next 81 individuals genotyped in our center. In the test set, the AUC was 0.781, and individuals with ADNC-RS in the top quintile had four-fold increased likelihood of having AD pathology at autopsy compared with those in each of the lowest two quintiles. Finally, in the validation stage of our study, we applied our ADNC-RS model to 70 LBD individuals from 20 Alzheimer's Disease Research Centers (ADRC) whose autopsy and genetic data were available in the National Alzheimer's Coordinating Center (NACC) database. In this validation set, the AUC was 0.754. Thus, in patients with autopsy-confirmed PD or DLB, a simple model incorporating three AD-risk SNPs and age at disease onset substantially enriches for concomitant AD pathology at autopsy, with implications for identifying LBD patients in which targeting amyloid-beta or tau is a therapeutic strategy.


Asunto(s)
Enfermedad por Cuerpos de Lewy/patología , Ovillos Neurofibrilares/patología , Enfermedad de Parkinson/patología , Placa Amiloide/patología , Edad de Inicio , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/patología , Femenino , Genotipo , Humanos , Enfermedad por Cuerpos de Lewy/genética , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/genética , Polimorfismo de Nucleótido Simple , Factores de Riesgo
18.
Mov Disord ; 33(2): 289-297, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29168904

RESUMEN

BACKGROUND: People with PD are at high risk of developing cognitive impairment and dementia. Cross-sectional studies have identified candidate biomarkers associated with cognitive decline. However, longitudinal studies on this topic are rarer, and few have investigated the use of biomarker panels encompassing multiple modalities. The objective of this study was to find baseline predictors of cognitive decline in longitudinally followed, nondemented Parkinson's disease patients. METHODS: We performed a prospective cohort study of 100 PD patients with a median disease duration of 6.4 years. All participants were nondemented at baseline. We examined 16 baseline biomarkers from clinical, genetic, biochemical, and MRI-based imaging modalities for their association with longitudinal cognitive decline for up to 8 years. We investigated biomarkers individually, as well as in a multivariate linear mixed-effects model encompassing multimodal biomarkers, with change in the Mattis Dementia Rating Scale-2 over time as the primary outcome. Annual consensus process-derived cognitive diagnosis was used for Cox proportional hazards modeling of risk for cognitive decline. RESULTS: In multivariate analysis, the presence of the APOE E4 allele, thought disorder, and an Alzheimer's disease pattern of brain atrophy (spatial pattern of abnormality for recognition of early Alzheimer's disease index) best predicted cognitive decline, with APOE E4 genotype exerting the greatest effect. The presence of the APOE E4 allele was associated with a 3.5 times higher risk of worsening cognitive diagnosis over time (HR, 3.53; 95% CI, 1.52-8.24; P < 0.05). The APOE genotype effect was not specific to any Mattis Dementia Rating Scale-2 domain. CONCLUSIONS: Our results confirm the importance of Alzheimer's disease biomarkers as risk factors for cognitive decline in established Parkinson's disease. © 2017 International Parkinson and Movement Disorder Society.


Asunto(s)
Apolipoproteína E4/genética , Disfunción Cognitiva/etiología , Disfunción Cognitiva/genética , Mutación/genética , Enfermedad de Parkinson/complicaciones , Enfermedad de Parkinson/genética , Anciano , Estudios de Cohortes , Estudios Transversales , Femenino , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Índice de Severidad de la Enfermedad , Estadísticas no Paramétricas
19.
Neurol Clin Pract ; 14(3): e200296, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38737514

RESUMEN

Background and Objectives: Teleneurology usage has increased during the severe acute respiratory syndrome coronavirus 2 pandemic. However, studies evaluating physician impressions of inpatient teleneurology are limited. We implemented a quality improvement initiative to evaluate neurologists' impression following individual inpatient teleneurology consultation at a satellite hospital of a large academic center with no in-person neurology coverage. Methods: A REDCap survey link was embedded within templates used by neurologists for documentation of inpatient consultations to be completed immediately after encounters. All teleneurology encounters with completed surveys at a single satellite hospital of the University of Pennsylvania Health System Neurology Department between May 10, 2021, and August 14, 2022, were included. Individual patient-level and encounter-level data were extracted from the medical record. Results: A total of 374 surveys (response rate of 54.05%) were completed by 19 neurologists; 341 questionnaires were included in the analysis. Seven neurologists who specialized as neurohospitalists completed 231 surveys (67.74% of total surveys completed), while 12 non-neurohospitalists completed 110 (32.36%). The history obtained was rated as worse (14%) or the same (86%) as an in-person consult; none reported the history as better than nonteleneurology encounters. The physician-patient relationship was poor or fair in 25% of the encounters and good or excellent in 75% of visits. The overall experience was judged to be worse than in-person consultation in 32% of encounters, the same in 66%, and better in 2%. Fifty-one percent of providers responded that there were elements of the neurologic examination that might have changed their assessment and plan of care if performed in-person. Encounters with peripheral or neuromuscular-related chief complaints had the most inadequate examinations and worse overall experiences, while the most positive impressions of these clinical experiences were observed among seizure-related chief complaints. Discussion: Determining best practices for inpatient teleneurology should consider the patient chief complaint to use teleneurology in scenarios with the highest likelihood of a positive experience. Further efforts should be made to the patient experience and to improve the remote examination to enhance the applicability of teleneurology to the full spectrum of inpatient neurologic consultations.

20.
bioRxiv ; 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38765963

RESUMEN

Spread and aggregation of misfolded α-synuclein (aSyn) within the brain is the pathologic hallmark of Lewy body diseases (LBD), including Parkinson's disease (PD) and dementia with Lewy bodies (DLB). While evidence exists for multiple aSyn protein conformations, often termed "strains" for their distinct biological properties, it is unclear whether PD and DLB result from aSyn strain differences, and biomarkers that differentiate PD and DLB are lacking. Moreover, while pathological forms of aSyn have been detected outside the brain ( e.g., in skin, gut, blood), the functional significance of these peripheral aSyn species is unclear. Here, we developed assays using monoclonal antibodies selective for two different aSyn species generated in vitro - termed Strain A and Strain B - and used them to evaluate human brain tissue, cerebrospinal fluid (CSF), and plasma, through immunohistochemistry, enzyme-linked immunoassay, and immunoblotting. Surprisingly, we found that plasma aSyn species detected by these antibodies differentiated individuals with PD vs. DLB in a discovery cohort (UPenn, n=235, AUC 0.83) and a multi-site replication cohort (Parkinson's Disease Biomarker Program, or PDBP, n=200, AUC 0.72). aSyn plasma species detected by the Strain A antibody also predicted rate of cognitive decline in PD. We found no evidence for aSyn strains in CSF, and ability to template aSyn fibrillization differed for species isolated from plasma vs. brain, and in PD vs. DLB. Taken together, our findings suggest that aSyn conformational differences may impact clinical presentation and cortical spread of pathological aSyn. Moreover, the enrichment of these aSyn strains in plasma implicates a non-central nervous system source.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda