Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Ann Bot ; 128(1): 97-113, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33821947

RESUMEN

BACKGROUND AND AIMS: Daylength determines flowering dates. However, questions remain regarding flowering dates in the natural environment, such as the synchronous flowering of plants sown simultaneously at highly contrasting latitudes. The daily change in sunrise and sunset times is the cue for the flowering of trees and for the synchronization of moulting in birds at the equator. Sunrise and sunset also synchronize the cell circadian clock, which is involved in the regulation of flowering. The goal of this study was to update the photoperiodism model with knowledge acquired since its conception. METHODS: A large dataset was gathered, including four 2-year series of monthly sowings of 28 sorghum varieties in Mali and two 1-year series of monthly sowings of eight rice varieties in the Philippines to compare with previously published monthly sowings in Japan and Malaysia, and data from sorghum breeders in France, Nicaragua and Colombia. An additive linear model of the duration in days to panicle initiation (PI) and flowering time using daylength and daily changes in sunrise and sunset times was implemented. KEY RESULTS: Simultaneous with the phyllochron, the duration to PI of field crops acclimated to the mean temperature at seedling emergence within the usual range of mean cropping temperatures. A unique additive linear model combining daylength and daily changes in sunrise and sunset hours was accurately fitted for any type of response in the duration to PI to the sowing date without any temperature input. Once calibrated on a complete and an incomplete monthly sowing series at two tropical latitudes, the model accurately predicted the duration to PI of the concerned varieties from the equatorial to the temperate zone. CONCLUSIONS: Including the daily changes in sunrise and sunset times in the updated photoperiodism model largely improved its accuracy at the latitude of each experiment. More research is needed to ascertain its multi-latitudinal accuracy, especially at latitudes close to the equator.


Asunto(s)
Oryza , Sorghum , Aclimatación , Flores , Humanos , Fotoperiodo , Temperatura
2.
Theor Appl Genet ; 92(8): 1024-30, 1996 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24166631

RESUMEN

Comparative mapping within maize, sorghum and sugarcane has previously revealed the existence of syntenic regions between the crops. In the present study, mapping on the sorghum genome of a set of probes previously located on the maize and sugarcane maps allow a detailed analysis of the relationship between maize chromosomes 3 and 8 and sorghum and sugarcane homoeologous regions. Of 49 loci revealed by 46 (4 sugarcane and 42 maize) polymorphic probes in sorghum, 42 were linked and were assigned to linkage groups G (28), E (10) and I (4). On the basis of common probes, a complete co-linearity is observed between sorghum linkage group G and the two sugarcane linkage groups II and III. The comparison between the consensus sorghum/sugarcane map (G/II/III) and the maps of maize chromosomes 3 and 8 reveals a series of linkage blocks within which gene orders are conserved. These blocks are interspersed with non-homoeologous regions corresponding to the central part of the two maize chromosomes and have been reshuffled, resulting in several inversions in maize compared to sorghum and sugarcane. The results emphasize the fact that duplication will considerably complicate precise comparative mapping at the whole genome scale between maize and other Poaceae.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda