RESUMEN
The length of global coastline is about 356 thousand kilometers with various dynamic natural and anthropogenic. Although the number of studies on coastal landscape categorization has been increasing, it is still difficult to distinguish precisely them because the used methods commonly are traditional qualitative ones. With the leverage of remote sensing data and GIS tools, it helps categorize and identify a variety of features on land and water based on multi-source data. The aim of study is using different natural - social profile data obtained from ALOS, NOAA, and multi-temporal Landsat satellite images as input data of the convolutional-neural-network (CvNet) models for coastal landscape classification. Studies used 900 cut-line samples which represent coastal landscapes in Vietnam for training and optimizing CvNet models. As a result, nine coastal landscapes were identified including: deltas, alluvial, mature and young sand dunes, cliff, lagoon, tectonic, karst, and transitional landscapes. Three CvNet models using three different optimizer types classified the landscapes of other 1150 cut-lines in Vietnam with the accuracies about 98% and low loss function value. Excepting dalmatian, karst and delta coastal landscapes, five others distribute heterogeneous along the coasts in Vietnam. Therefore, the evaluation of additional natural components is necessary and CvNet model have ability to update new landscape types in variety of tropical nation as a step toward coastal landscape classification at both national and global scales.
Asunto(s)
Monitoreo del Ambiente , Tecnología de Sensores Remotos , Vietnam , Monitoreo del Ambiente/métodos , Redes Neurales de la Computación , AmbienteRESUMEN
Climate change and increasing urbanization are two primary factors responsible for the increased risk of serious flooding around the world. The prediction and monitoring of the effects of land use/land cover (LULC) and climate change on flood risk are critical steps in the development of appropriate strategies to reduce potential damage. This study aimed to develop a new approach by combining machine learning (namely the XGBoost, CatBoost, LightGBM, and ExtraTree models) and hydraulic modeling to predict the effects of climate change and LULC change on land that is at risk of flooding. For the years 2005, 2020, 2035, and 2050, machine learning was used to model and predict flood susceptibility under different scenarios of LULC, while hydraulic modeling was used to model and predict flood depth and flood velocity, based on the RCP 8.5 climate change scenario. The two elements were used to build a flood risk assessment, integrating socioeconomic data such as LULC, population density, poverty rate, number of women, number of schools, and cultivated area. Flood risk was then computed, using the analytical hierarchy process, by combining flood hazard, exposure, and vulnerability. The results showed that the area at high and very high flood risk increased rapidly, as did the areas of high/very high exposure, and high/very high vulnerability. They also showed how flood risk had increased rapidly from 2005 to 2020 and would continue to do so in 2035 and 2050, due to the dynamics of climate change and LULC change, population growth, the number of women, and the number of schools - particularly in the flood zone. The results highlight the relationships between flood risk and environmental and socio-economic changes and suggest that flood risk management strategies should also be integrated in future analyses. The map built in this study shows past and future flood risk, providing insights into the spatial distribution of urban area in flood zones and can be used to facilitate the development of priority measures, flood mitigation being most important.
RESUMEN
The issue of tourism impacts is one that has plagued the tourism industry. This study develops a quantitative approach using hierarchical variance analysis, which deals with the exploration of the relevant factors and the confirmation of their significant contribution to analyze the residents' perception of tourism impacts. Hierarchical variance analysis includes three mathematical procedures: Cronbach's alpha tests, the exploration of relevant factors, and a hierarchical factor confirmation. Data are collected using a structured questionnaire completed by 452 surveyed residents living in Ly Son Island, Vietnam. The significant effects of socio-demographic variables on the overall impact assessment are observed. The bilateral and simultaneous relationships are analyzed using a one-factor ANOVA. A two-factor ANOVA shows the significant contribution of each socio-demographic variable on the economic, socio-cultural, and environmental impacts. Interaction between factors such as "Education level", "Type of work", etc. are hierarchically confirmed. The findings allow a better understanding of the residents' perception of the effects of tourism on society, the economy, and the environment. This provides a scientific basis to help define problems and promote legal regulations for community participation in tourism planning in a small island destination.