Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Langmuir ; 40(23): 11936-11946, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38797979

RESUMEN

Lipid/copolymer colloidal systems are deemed hybrid materials with unique properties and functionalities. Their hybrid nature leads to complex interfacial phenomena, which have not been fully encoded yet, navigating their properties. Moving toward in-depth knowledge of such systems, a comprehensive investigation of them is imperative. In the present study, hybrid lipid/copolymer structures were fabricated and examined by a gamut of techniques, including dynamic light scattering, fluorescence spectroscopy, cryogenic transmission electron microscopy, microcalorimetry, and high-resolution ultrasound spectroscopy. The biomaterials that were mixed for this purpose at different ratios were 1,2-dioctadecanoyl-sn-glycero-3-phosphocholine and four different linear, statistical (random) amphiphilic copolymers, consisting of oligo(ethylene glycol) methyl ether methacrylate as the hydrophilic comonomer and lauryl methacrylate as the hydrophobic one. The colloidal dispersions were studied for lipid/copolymer interactions regarding their physicochemical, morphological, and biophysical behavior. Their membrane properties and interactions with serum proteins were also studied. The aforementioned techniques confirmed the hybrid nature of the systems and the location of the copolymer in the structure. More importantly, the random architecture of the copolymers, the hydrophobic-to-hydrophilic balance of the nanoplatforms, and the lipid-to-polymer ratio are highlighted as the main design-influencing factors. Elucidating the lipid/copolymer interactions would contribute to the translation of hybrid nanoparticle performance and, thus, their rational design for multiple applications, including drug delivery.


Asunto(s)
Coloides , Coloides/química , Polímeros/química , Interacciones Hidrofóbicas e Hidrofílicas , Polietilenglicoles/química , Metacrilatos/química
2.
Soft Matter ; 20(3): 546-557, 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38126407

RESUMEN

Amphiphilic triblock copolymers, polyglycidol-polystyrene-polyglycidol (PGL-PS-PGL), were synthesised via anionic polymerization starting from the synthesis of a polystyrene macroinitiator with 60 styrene units in the block terminated by ethylene oxide. Poly(ethoxyethyl glycidyl ether) blocks of different lengths were created on both sides of the macroinitiator. By removing the ethoxyethyl blocking groups, PGL-PS-PGL copolymers containing polyglycidol blocks with DP 11, 23, 44 and 63 were received. Their structures were determined by NMR and FTIR. The hydrophilicity of PLG-PS-PGL films was studied upon exposure to water vapour. To perform the copolymers' aggregation in water, the samples were dialysed from DMF into water. The critical concentration of their micellisation (CMC) was determined by measuring the absorbance of the 1,6-diphenylhexa-1,3,5-triene (DPH) probe and the intensity of light scattered by the copolymers' solution as a function of concentration. CMC values increased with increasing the number of hydrophilic glycidol units in the copolymer chain. The sizes of aggregates formed slightly above the critical concentration were measured by dynamic light scattering (DLS), and particles were imaged by cryo-TEM. Cryo-TEM pictures showed the presence of regular micelles in copolymer dispersions. For copolymers with shorter PGL chains aggregated partices were detected. Moreover, cryo-TEM demonstrated that the copolymers with a polyglycidol block of DP = 63 formed regular spherical micelles that formed 2D ordered organisation on the surface. X-ray measurements showed the formation of a partially crystallised PS core in the micelle's interior. The aggregates of all copolymers were stable. Their sizes did not change after one year of storage. The particles did not disassociate even after diluting their dispersions to a concentration 10 times lower than the critical concentration.

3.
Int J Mol Sci ; 25(11)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38892083

RESUMEN

Oil-core nanocapsules (NCs, also known as nanoemulsions) are of great interest due to their application as efficient carriers of various lipophilic bioactives, such as drugs. Here, we reported for the first time the preparation and characterization of NCs consisting of chondroitin sulfate (CS)-based shells and liquid oil cores. For this purpose, two amphiphilic CS derivatives (AmCSs) were obtained by grafting the polysaccharide chain with octadecyl or oleyl groups. AmCS-based NCs were prepared by an ultrasound-assisted emulsification of an oil phase consisting of a mixture of triglyceride oil and vitamin E in a dispersion of AmCSs. Dynamic light scattering and cryo-transmission electron microscopy showed that the as-prepared core-shell NCs have typical diameters in the range of 30-250 nm and spherical morphology. Since CS is a strong polyanion, these particles have a very low surface potential, which promotes their stabilization. The cytotoxicity of the CS derivatives and CS-based NCs and their impact on cell proliferation were analyzed using human keratinocytes (HaCaTs) and primary human skin fibroblasts (HSFs). In vitro studies showed that AmCSs dispersed in an aqueous medium, exhibiting mild cytotoxicity against HaCaTs, while for HSFs, the harmful effect was observed only for the CS derivative with octadecyl side groups. However, the nanocapsules coated with AmCSs, especially those filled with vitamin E, show high biocompatibility with human skin cells. Due to their stability under physiological conditions, the high encapsulation efficiency of their hydrophobic compounds, and biocompatibility, AmCS-based NCs are promising carriers for the topical delivery of lipophilic bioactive compounds.


Asunto(s)
Sulfatos de Condroitina , Portadores de Fármacos , Nanocápsulas , Nanocápsulas/química , Humanos , Sulfatos de Condroitina/química , Portadores de Fármacos/química , Suplementos Dietéticos , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Queratinocitos/efectos de los fármacos , Emulsiones/química , Tamaño de la Partícula , Vitamina E/química , Supervivencia Celular/efectos de los fármacos , Línea Celular , Células HaCaT
4.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38256239

RESUMEN

Ropinirole is a non-ergolinic dopamine agonist used to manage Parkinson's disease and it is characterized by poor oral bioavailability. This study aimed to design and develop advanced drug delivery systems composed of poloxamer 407, a non-ionic surfactant (Tween 80), and cyclodextrins (methyl-ß-CD or hydroxy-propyl-ß-CD) for possible brain targeting of ropinirole after nasal administration for the treatment of Parkinson's disease. The hybrid systems were formed by the thin-film hydration method, followed by an extensive physicochemical and morphological characterization. The in vitro cytotoxicity of the systems on HEK293 cell lines was also tested. In vitro release and ex vivo mucosal permeation of ropinirole were assessed using Franz cells at 34 °C and with phosphate buffer solution at pH 5.6 in the donor compartment, simulating the conditions of the nasal cavity. The results indicated that the diffusion-controlled drug release exhibited a progressive increase throughout the experiment, while a proof-of-concept experiment on ex vivo permeation through rabbit nasal mucosa revealed a better performance of the prepared hybrid systems in comparison to ropinirole solution. The encouraging results in drug release and mucosal permeation indicate that these hybrid systems can serve as attractive platforms for effective and targeted nose-to-brain delivery of ropinirole with a possible application in Parkinson's disease. Further ex vivo and in vivo studies to support the results of the present work are ongoing.


Asunto(s)
Indoles , Enfermedad de Parkinson , Surfactantes Pulmonares , Humanos , Animales , Conejos , Tensoactivos , Polímeros , Células HEK293 , Enfermedad de Parkinson/tratamiento farmacológico , Encéfalo , Lipoproteínas , Mucosa Nasal
5.
Small ; 19(4): e2205284, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36433825

RESUMEN

Micro-sized silicon (µSi) anode features fewer interfacial side reactions and lower costs compared to nanosized silicon, and has higher commercial value when applied as a lithium-ion battery (LIB) anode. However, the high localized stress generated during (de)lithiation causes electrode breakdown and performance deterioration of the µSi anode. In this work, hollow graphitic carbons with tailored dual sizes are employed as conductive additives for the µSi anode to overcome electrode failure. The dual-size hollow graphitic carbons (HGC) additives consist of particles with micrometer size similar to the µSi particles; these additives are used for strain regulation. Additionally, nanometer-size particles similar to commercial carbon black Spheron (SP) are used mainly for kinetics acceleration. In addition to building an efficient conductive network, the dual-size hollow graphitic carbon conductive additive prevents the fracture of the electrode by reducing local stress and alleviating volume expansion. The µSi anode with dual-size hollow graphitic carbons as conductive additives achieves an impressive capacity of 651.4 mAh g-1 after 500 cycles at a high current density of 2 A g-1 . These findings suggest that dual-size hollow graphitic carbons are expected to be superior conductive additives for micro-sized alloy anodes similar to µSi.

6.
Soft Matter ; 18(29): 5426-5434, 2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-35819021

RESUMEN

A feasible one pot synthesis of hollow spherical nucleic acids (SNAs) using phospholipid liposomes is reported. These constructs are synthesized in a chemically straightforward process involving formation of unilamellar liposomes, coating the liposomes with a thin cross-linked polymeric layer, and grafting the latter with short (about 20 bases) DNA oligonucleotide strands. They consist of vesicular cores, composed of readily available phospholipid (1,2-dipalmitoyl-sn-glycero-phosphocholine), whereas the strands are deliberately arranged on the surface of the vesicular entities. The initial vesicular structure and morphology are preserved during the coating and grafting reactions. The novel hollow/vesicular SNAs are characterized with a hydrodynamic radius and radius of gyration of 78.3 and 88.5 nm, respectively, and moderately negative (-14.2 mV) ζ potential. They carry thousands (5868) of oligonucleotide strands per vesicle, which are not strongly radially oriented and adopt an unextended conformation as anticipated from the smaller value of the grafting density compared to the critical grafting density at the transition to brush conformation. The constructs are practically devoid of toxicity and exhibit high binding affinity to complementary nucleic acids. Unlike any other nucleic acid structural motif, they cross the cell membrane and enter cells without the need of transfection agents.


Asunto(s)
Ácidos Nucleicos , Fosfolípidos , Liposomas/química , Ácidos Nucleicos/química , Oligonucleótidos , Fosfolípidos/química , Polímeros/química , Liposomas Unilamelares
7.
Biomacromolecules ; 22(2): 971-983, 2021 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-33371665

RESUMEN

Novel N-substituted polyacrylamides bearing a cycle with two tertiary amines, poly(4-methyl-piperazin-1-yl)-propenone (PMPP) and its block copolymers with polylactide (PMPP-b-PLA), are synthesized and characterized. The homopolymers are water-soluble, whereas the block copolymers self-assemble in aqueous solution into a small size (Rh around 30 nm), are narrowly distributed, and exhibit core-shell micelles with good colloidal stability. Both the homopolymers and copolymer micelles are positively charged (ζ-potentials in the 13.8-17.6 mV range), which are employed for formation of electrostatic complexes with oppositely charged DNA. Complexes (polyplexes, micelleplexes, and spherical nucleic acidlike structures) in a wide range of N/P (amino to phosphate groups) ratios are prepared with short (115 bp) and long (2000 bp) DNA. The behavior and physicochemical properties of the resulting nanocarriers of DNA are strongly dependent on the polymer/polymer micelles' characteristics and the DNA chain length. All systems exhibit low cytotoxicity and good cellular uptake ability and show promise for gene delivery and regulation.


Asunto(s)
Micelas , Polímeros , Resinas Acrílicas , Cationes , Polietilenglicoles
8.
Biofouling ; 36(6): 679-695, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32741293

RESUMEN

Pseudomonas aeruginosa is an opportunistic Gram-negative pathogen often associated with biofilm infections. This study evaluated the capacity for biofilm destruction of a novel combination of cationic polymer micelles formed from poly(2-(dimethylamino)ethyl methacrylate)-b-poly(ε-caprolactone)-b-poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA-PCL-PDMAEMA) triblock copolymer either alone, or loaded with silver nanoparticles (M_AgNPs). Pre-formed P. aeruginosa biofilms were incubated with either blank micelles, AgNO3, or M_AgNPs. Biofilm biomass (crystal violet assay), metabolic activity (Alamar blue reduction), structure (SEM) and viability (CLSM after Live/Dead staining, or plating for CFU) were checked. The results showed that the micelles alone loosened the biofilm matrix, and caused some alterations in the bacterial surface. AgNO3 killed the bacteria in situ leaving dead biofilm bacteria on the surface. M_AgNPs combined the two types of activities causing significant biofilm reduction, and alteration and death of biofilm bacteria. Therefore, the applied PDMAEMA-based micelles appear to be a successful candidate for the treatment of P. aeruginosa biofilm infections.


Asunto(s)
Biopelículas , Nanopartículas del Metal , Pseudomonas aeruginosa , Antibacterianos/farmacología , Micelas , Polímeros , Plata/farmacología
9.
Macromol Rapid Commun ; 40(24): e1900477, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31709675

RESUMEN

Amphiphilic poly[n-butyl acrylate-block-(2-(dimethylamino)ethyl acrylate)] (PnBA-b-PDMAEA) block copolymers are synthesized by the reversible addition fragmentation chain transfer polymerization process. The pH-responsive self-assembly behavior in aqueous media is studied by dynamic, static, and electrophoretic light scattering and cryogenic transmission electron microscopy (Cryo-TEM) at different pHs. In particular, the PnBA40 -b-PDMAEA60 copolymer (where subscripts denote %wt composition of the components) shows remarkable morphological transitions in aqueous solutions of varying pH values forming, among others, an unusual and novel hierarchical vesicular morphology, as indicated by Cryo-TEM results. The observed transitions are attributed to synergistic effects involving alterations of the protonation degree of the PDMAEA block, in conjunction with the specific composition of the copolymer and the softness of PnBA blocks, with cumulative drive changes in the packing parameter of the copolymer system and result in the formation of various unexpected morphologies by simple pH changes.


Asunto(s)
Acrilatos/química , Polímeros/química , Tensoactivos/química , Concentración de Iones de Hidrógeno , Tamaño de la Partícula , Polímeros/síntesis química , Propiedades de Superficie , Tensoactivos/síntesis química
10.
Nano Lett ; 17(8): 4725-4732, 2017 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-28691821

RESUMEN

The promise of sp2 nanomaterials remains immense, and ways to strategically combine and manipulate these nanostructures will further enhance their potential as well as advance nanotechnology as a whole. The scale of these structures requires precision at the atomic scale. In this sense electron microscopes are attractive as they offer both atomic imaging and a means to structurally modify structures. Here we show how Cr atoms can be used as physical linkers to connect carbon nanotubes and fullerenes to graphene. Crucially, while under electron irradiation, the Cr atoms can drive transformations such as catalytic healing of a hole in graphene with simultaneous transformation of a single wall carbon nanotube into a fullerene. The atomic resolution of the electron microscopy along with density functional theory based total energy calculations provide insight into the dynamic transformations of Cr atom linkers. The work augments the potential of transmission electron microscopes as nanolaboratories.

11.
AAPS PharmSciTech ; 19(7): 2971-2989, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30030723

RESUMEN

Chimeric/mixed stimuli-responsive nanocarriers are promising agents for therapeutic and diagnostic applications, as well as in the combinatorial field of theranostics. Herein, we designed chimeric nanosystems, composed of natural phospholipid and pH-sensitive amphiphilic diblock copolymer, in different molar ratios and assessed the polymer lyotropic effect on their properties. Initially, polymer-grafted bilayers were evaluated for their thermotropic behavior by thermal analysis. Chimeric liposomes were prepared through thin-film hydration and the obtained vesicles were studied by light scattering techniques, to measure their physicochemical characteristics and colloidal stability, as well as by imaging techniques, to elucidate their global and membrane morphology. Finally, in vitro screening of the systems' toxicity was held. The copolymer effect on the membrane phase transition strongly depended on the pH of the surrounding environment. Chimeric nanoparticles were around and above 100 nm, while electron microscopy revealed occasional morphology diversity, probably affecting the toxicity of the systems. The latter was assessed to be tolerable, while dependent on the nanosystems' material concentration, polymer concentration, and polymer composition. All experiments suggested that the thermodynamic and biophysical properties of the nanosystems are copolymer-composition- and concentration-dependent, since different amounts of incorporated polymer would produce divergent effects on the lyotropic liquid crystal membrane. Certain chimeric systems can be exploited as advanced drug delivery nanosystems, based on their overall promising profiles.


Asunto(s)
Portadores de Fármacos/análisis , Portadores de Fármacos/química , Desarrollo de Medicamentos/métodos , Nanoestructuras/análisis , Nanoestructuras/química , Sistemas de Liberación de Medicamentos/métodos , Evaluación Preclínica de Medicamentos/métodos , Concentración de Iones de Hidrógeno , Liposomas , Micelas , Polímeros/análisis , Polímeros/química
12.
Biomacromolecules ; 17(8): 2691-700, 2016 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-27409457

RESUMEN

This study describes a novel approach to polymeric nanocarriers of the therapeutic peptide met-enkephalin based on the aggregation of thermoresponsive polymers. Thermoresponsive bioconjugate poly((di(ethylene glycol) monomethyl ether methacrylate)-ran-(oligo(ethylene glycol) monomethyl ether methacrylate) is synthesized by AGET ATRP using modified met-enkephalin as a macroinitiator. The abrupt heating of bioconjugate water solution leads to the self-assembly of bioconjugate chains and the formation of mesoglobules of controlled sizes. Mesoglobules formed by bioconjugates are stabilized by coating with cross-linked two-layer shell via nucleated radical polymerization of N-isopropylacrylamide using a degradable cross-linker. The targeting peptide RGD, containing the fluorescence marker carboxyfluorescein, is linked to a nanocarrier during the formation of the outer shell layer. In the presence of glutathione, the whole shell is completely degradable and the met-enkephalin conjugate is released. It is anticipated that precisely engineered nanoparticles protecting their cargo will emerge as the next-generation platform for cancer therapy and many other biomedical applications.


Asunto(s)
Portadores de Fármacos/química , Encefalina Metionina/química , Nanopartículas/química , Oligopéptidos/química , Polímeros/química , Polimerizacion , Propiedades de Superficie
13.
J Mater Sci Mater Med ; 27(6): 111, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-27153827

RESUMEN

In cell or tissue engineering, it is essential to develop a support for cell-to-cell adhesion, which leads to the generation of cell sheets connected by extracellular matrix. Such supports must be hydrophobic and should result in a detachable cell sheet. A thermoresponsive support that enables the cultured cell sheet to detach using only a change in temperature could be an interesting alternative in regenerative medicine. The aim of this study was to evaluate plates covered with thermoresponsive polymers as supports for the formation of fibroblast sheets and to develop a damage-free procedure for cell sheet transfer with the use of membranes as transfer tools. Human skin fibroblasts were seeded on supports coated with a thermoresponsive polymer: commercial UpCell™ dishes (NUNC™) coated with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) and dishes coated with thermoresponsive poly(tri(ethylene glycol) monoethyl ether methacrylate) (P(TEGMA-EE)). Confluent fibroblast sheets were effectively cultured and harvested from both commercial PNIPAM-coated dishes and laboratory P(TEGMA-EE)-coated dishes. To transfer a detached cell sheet, two membranes, Immobilon-P(®) and SUPRATHEL(®), were examined. The use of SUPRATHEL for relocating the cell sheets opens a new possibility for the clinical treatment of wounds. This study established the background for implementing thermoresponsive supports for transplanting in vitro cultured fibroblasts.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Fibroblastos/fisiología , Membranas Artificiales , Técnicas de Cultivo de Célula/métodos , Supervivencia Celular , Humanos , Piel/citología , Temperatura , Ingeniería de Tejidos/instrumentación , Ingeniería de Tejidos/métodos
14.
Biomacromolecules ; 16(10): 3275-85, 2015 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-26375579

RESUMEN

Star polymers with random and block copolymer arms made of cationic N,N'-dimethylaminoethyl methacrylate (DMAEMA) and nonionic di(ethylene glycol) methyl ether methacrylate (DEGMA) were synthesized via atom transfer radical polymerization (ATRP) and used for the delivery of plasmid DNA in gene therapy. All stars were able to form polyplexes with plasmid DNA. The structure and size of the polyplexes were precisely determined using light scattering and cryo-TEM microscopy. The hydrodynamic radius of a complex of DNA with star was dependent on the architecture of the star arms, the DEGMA content and the number of amino groups in the star compared to the number of phosphate groups of the nucleic acid (N/P ratio). The smallest polyplexes (Rh90°âˆ¼50 nm) with positive zeta potentials (∼15 mV) were formed of stars with N/P=6. The introduction of DEGMA into the star structure caused a decrease of polyplex cytotoxicity in comparison to DMAEMA homopolymer stars. The overall transfection efficiency using HT-1080 cells showed that the studied systems are prospective gene delivery agents. The most promising results were obtained for stars with random copolymer arms of high DEGMA content.


Asunto(s)
ADN/administración & dosificación , Glicoles de Etileno/química , Metacrilatos/química , Plásmidos , Polímeros/química , Línea Celular Tumoral , Humanos , Microscopía Electrónica de Transmisión , Espectroscopía de Protones por Resonancia Magnética
15.
Biomacromolecules ; 16(9): 2805-13, 2015 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-26226320

RESUMEN

Semicrystalline, thermoresponsive poly(2-isopropyl-2-oxazoline) (PIPOx) layers covalently bonded to glass or silica wafers were obtained via the surface-termination of the living polymer chains. Polymer solutions in acetonitrile were exposed to 50 °C for various time periods and were poured onto the functionalized solid wafers. Fibrillar crystallites formed in polymerization solutions settled down onto the wafers next to the amorphous polymer. The amount of crystallites adsorbed on thermoresponsive polymer layers depended on the annealing time of the PIPOx solution. The wettability of PIPOx layers decreased with the increasing amount of crystallites. The higher content of crystallites weakened the temperature response of the layer, as evidenced by the philicity and thickness measurements. Semicrystalline thermoresponsive PIPOx layers were used as biomaterials for human dermal fibroblasts (HDFs) culture and detachment. The presence of crystallites on the PIPOx layers promoted the proliferation of HDFs. Changes in the physicochemical properties of the layer, caused by the temperature response of the polymer, led to the change in the cells shape from a spindle-like to an ellipsoidal shape, which resulted in their detachment. A supporting membrane was used to assist the detachment of the cells from PIPOx biosurfaces and to prevent the rolling of the sheet.


Asunto(s)
Dermis/metabolismo , Fibroblastos/metabolismo , Vidrio/química , Membranas Artificiales , Oxazoles/química , Dióxido de Silicio/química , Adhesión Celular , Células Cultivadas , Dermis/citología , Fibroblastos/citología , Humanos
16.
Langmuir ; 30(17): 5015-25, 2014 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24697681

RESUMEN

Poly(ethylene glycol)s (PEGs) with different lengths were used as linkers during the preparation of peptide surfaces for protease detection. In the first approach, the PEG monolayers were prepared using a "grafting to" method on 3-aminopropyltrietoxysilane (APTES)-modified silicon wafers. Protected peptides with a fluorescent marker were synthesized by Fmoc solid phase synthesis. The protected peptide structures enabled their site-specific immobilization onto the PEG surfaces. Alternatively, the PEG-peptide surface was obtained by immobilizing a PEG-peptide conjugate directly onto the modified silicon wafer. The surfaces (composition, grafting density, hydrophilicity, and roughness) were characterized by time-of-flight-secondary ion mass spectrometry (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), contact angle (CA), and atomic force microscopy (AFM). Introducing the PEG linker between the peptide and surface increased their resistance toward nonspecific protein adsorption. The peptide surfaces were examined as analytical platforms to study the action of trypsin as a representative protease. The products of the enzymatic hydrolysis were analyzed by fluorescence spectroscopy, electrospray ionization-mass spectrometry (ESI-MS), and ToF-SIMS. Conclusions about the optimal length of the PEG linker for the analytical application of PEG-peptide surfaces were drawn. This work demonstrates an effective synthetic procedure to obtain PEG-peptide surfaces as attractive platforms for the development of peptide microarrays.


Asunto(s)
Bioensayo/métodos , Péptido Hidrolasas/metabolismo , Péptidos/química , Péptidos/metabolismo , Polietilenglicoles/química , Espectroscopía de Fotoelectrones , Espectrometría de Masa de Ion Secundario , Propiedades de Superficie
17.
Biomacromolecules ; 15(12): 4377-95, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25320910

RESUMEN

A novel approach for the preparation of nano- and microcapsules in aqueous solutions by using thermoresponsive polymer (TRP) templates (mesoglobules) is described. The method comprised three steps: formation of mesoglobules, coating the templates by seeded radical copolymerization, followed by core dissolution and core removal upon cooling. When mesoglobule entraps biomacromolecules during the process of their formation, it makes it possible to load a controlled amount of bioactive compounds without covalent attachment. Special attention is paid to the mesoglobule dissolution upon cooling, as well as their loading efficiency. Details on the outer shell formation and the possibilities for targeting ligands incorporation and control of the shell porosity are discussed. Finally, the seeded radical copolymerization was used for covering DNA complexes with cationic copolymers bearing TRP blocks. This Review is an attempt to convince researchers of the promising perspectives for using mesoglobules as potential reservoirs, carriers, and transferring agents for biologically active substances.


Asunto(s)
Técnicas de Transferencia de Gen , Nanopartículas/química , Polímeros/química , Cápsulas/química , ADN , Humanos , Temperatura
18.
J Mater Sci Mater Med ; 25(4): 1149-63, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24390278

RESUMEN

The thermoresponsive surfaces of brush structure (linear polymer chains tethered on the surface) based on poly(2-isopropyl-2-oxazoline)s and copolymers of 2-ethyl-2-oxazoline and 2-nonyl-2-oxazoline were obtained using the grafting-to method. The living oxazoline (co)polymers have been synthesized by cationic ring-opening polymerization and subsequently terminated by the reactive amine groups present on the surface. The changes in the surface morphology, philicity and thickness occurring during surface modification were monitored via atomic force microscopy, contact angle and ellipsometry. The thickness of the (co)poly(2-substituted-2-oxazoline) layers ranged from 4 to 11 nm depending on the molar mass of immobilized polymer and reversibly varied with the temperature changes. This confirmed thermoresponsive properties of obtained surfaces. The obtained polymer surfaces were used as a support for dermal fibroblast culture and detachment. The fibroblasts' adhesion and proliferation on the polymer surfaces were observed when the culture temperature was above the cloud point temperature of the immobilized polymer. Lowering the temperature resulted in the detachment of the dermal fibroblast sheets from the polymer layers, which makes these surfaces suitable for the treatment of wounds and in skin tissue engineering.


Asunto(s)
Materiales Biocompatibles/química , Fibroblastos/citología , Oxazoles/química , Materiales Biocompatibles/síntesis química , Adhesión Celular , Células Cultivadas , Humanos , Ensayo de Materiales , Oxazoles/síntesis química , Poliaminas/química , Piel/citología , Propiedades de Superficie , Temperatura , Ingeniería de Tejidos , Andamios del Tejido/química
19.
Polymers (Basel) ; 16(15)2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39125191

RESUMEN

Nanomedicine is a discipline of medicine that applies all aspects of nanotechnology strategies and concepts for treatment and screening possibilities. Synthetic polymer nanostructures are among the many nanomedicine formulations frequently studied for their potential as vectors. Bioimaging is a valuable diagnostic tool, thus, there is always a demand for new excipients/nanocarriers. In this study, hydrophobic hyperbranched poly(lauryl methacrylate) (PLMA) homopolymers comprised of highly hydrophobic LMA moieties with -COOH polar end groups were synthesized by employing reversible addition-fragmentation chain transfer (RAFT) polymerization. Ethylene glycol dimethacrylate (EGDMA) was utilized as the branching agent. End groups are incorporated through the RAFT agent utilized. The resulting amphiphilic hyperbranched polymer was molecularly characterized by size exclusion chromatography (SEC), Fourier transformation infrared spectroscopy (FT-IR), and 1H-NMR spectroscopy. Pyrene, curcumin, and IR-1048 dye were hydrophobic payload molecules successfully encapsulated to show how adaptable these homopolymer nanoparticles (prepared by nanoprecipitation in water) are as dye nanocarriers. This study demonstrates a simple way of producing excipients by generating polymeric nanoparticles from an amphiphilic, hyperbranched, hydrophobic homopolymer, with a low fraction of polar end groups, for bioimaging purposes.

20.
Polymers (Basel) ; 16(2)2024 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-38276698

RESUMEN

The combination of phospholipids and block-copolymers yields advanced hybrid nanoparticles through the self-assembly process in an aqueous environment. The physicochemical features of the lipid/polymer components, like the lipid-polymer molar ratio, the macromolecular architecture of the block copolymer, the main transition temperature of the phospholipid, as well as the formulation and preparation protocol parameters, are some of the most crucial parameters for the formation of hybrid lipid/polymer vesicles and for the differentiation of their morphology. The morphology, along with other physicochemical nanoparticle characteristics are strictly correlated with the nanoparticle's later biological behavior after being administered, affecting interactions with cells, biodistribution, uptake, toxicity, drug release, etc. In the present study, a structural evaluation of hybrid lipid-polymer nanoparticles based on cryo-TEM studies was undertaken. Different kinds of hybrid lipid-polymer nanoparticles were designed and developed using phospholipids and block copolymers with different preparation protocols. The structures obtained ranged from spherical vesicles to rod-shaped structures, worm-like micelles, and irregular morphologies. The obtained morphologies were correlated with the formulation and preparation parameters and especially the type of lipid, the polymeric guest, and their ratio.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda