Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 25(13)2024 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-38999986

RESUMEN

Higher-fungi xylotrophic basidiomycetes are known to be the reservoirs of bioactive metabolites. Currently, a great deal of attention has been paid to the exploitation of mycelial fungi products as an innovative alternative in crop protection. No data exist on the mechanisms behind the interaction between xylotrophic mushrooms' glycopolymeric substances and plants. In this study, the effects of basidiomycete metabolites on the morphophysiological and biochemical variables of wheat plants have been explored. Wheat (Triticum aestivum L. cv. Saratovskaya 29) seedlings were treated with extracellular polysaccharides (EPSs) isolated from the submerged cultures of twenty basidiomycete strains assigned to 13 species and 8 genera. The EPS solutions at final concentrations of 15, 40, and 80 mg/L were applied to wheat seedlings followed by their growth for 10 days. In the plant samples, the biomass, length of coleoptile, shoot and root, root number, rate of lipid peroxidation by malondialdehyde concentration, content of hydrogen peroxide, and total phenols were measured. The peroxidase and superoxide dismutase activity were defined. Most of the EPS preparations improved biomass yields, as well as the morphological parameters examined. EPS application enhanced the activities of antioxidant enzymes and decreased oxidative damage to lipids. Judging by its overall effect on the growth indices and redox system of wheat plants, an EPS concentration of 40 mg/L has been shown to be the most beneficial compared to other concentrations. This study proves that novel bioformulations based on mushroom EPSs can be developed and are effective for wheat growth and antioxidative response. Phytostimulating properties found for EPSs give grounds to consider extracellular metabolites produced in the xylotrophic basidiomycete cultures as an active component capable of inducing plant responses to stress.


Asunto(s)
Antioxidantes , Basidiomycota , Polisacáridos Fúngicos , Triticum , Triticum/metabolismo , Triticum/crecimiento & desarrollo , Triticum/microbiología , Basidiomycota/metabolismo , Antioxidantes/metabolismo , Polisacáridos Fúngicos/metabolismo , Polisacáridos/metabolismo , Plantones/crecimiento & desarrollo , Plantones/metabolismo , Superóxido Dismutasa/metabolismo , Peroxidación de Lípido , Biomasa , Malondialdehído/metabolismo , Estrés Oxidativo
2.
Int J Mol Sci ; 24(20)2023 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-37894799

RESUMEN

A series of new fluorinated 1-benzylisatins was synthesized in high yields via a simple one-pot procedure in order to explore the possible effect of ortho-fluoro (3a), chloro (3b), or bis-fluoro (3d) substitution on the biological activity of this pharmacophore. Furthermore, the new isatins could be converted into water-soluble isatin-3-hydrazones using their acid-catalyzed reaction with Girard's reagent P and its dimethyl analog. The cytotoxic action of these substances is associated with the induction of apoptosis caused by mitochondrial membrane dissipation and stimulated reactive oxygen species production in tumor cells. In addition, compounds 3a and 3b exhibit platelet antiaggregation activity at the level of acetylsalicylic acid, and the whole series of fluorine-containing isatins does not adversely affect the hemostasis system as a whole. Among the new water-soluble pyridinium isatin-3-acylhydrazones, compounds 7c and 5c,e exhibit the highest antagonistic effect against phytopathogens of bacterial and fungal origin and can be considered useful leads for combating plant diseases.


Asunto(s)
Antineoplásicos , Isatina , Isatina/farmacología , Hidrazonas/farmacología , Agua/farmacología , Antineoplásicos/farmacología , Apoptosis , Relación Estructura-Actividad
3.
Molecules ; 27(14)2022 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-35889308

RESUMEN

Multicomponent materials, where nanosized selenium (Se) is dispersed in polymer matrices, present as polymer nanocomposites (NCs), namely, selenium polymer nanocomposites (SeNCs). Selenium as an inorganic nanofiller in NCs has been extensively studied for its biological activity. More ecologically safe and beneficial approaches to obtain Se-based products are the current challenge. Biopolymers have attained great attention with perspective multifunctional and high-performance NCs exhibiting low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Composites based on polysaccharides, including beta-glucans from edible and medicinal mushrooms, are bioactive, biocompatible, biodegradable, and have exhibited innovative potential. We synthesized SeNCs on the basis of the extracellular polysaccharides of several medicinal mushrooms. The influence of bio-composites from mushrooms on potato plant growth and tuber germination were studied in two potato cultivars: Lukyanovsky and Lugovskoi. Bio-composites based on Grifola umbellata demonstrated the strongest positive effect on the number of leaves and plant height in both cultivars, without negative effect on biomass of the vegetative part. Treatment of the potato tubers with SeNC from Gr. umbellata also significantly increased germ length. Potato plants exposed to Se-bio-composite from Ganoderma lucidum SIE1303 experienced an increase in the potato vegetative biomass by up to 55% versus the control. We found earlier that this bio-composite was the most efficient against biofilm formation by the potato ring rot causative agent Clavibacter sepedonicus (Cms). Bio-composites based on Pleurotus ostreatus promoted increase in the potato root biomass in the Lugovskoi cultivar by up to 79% versus the control. The phytostimulating ability of mushroom-based Se-containing bio-composites, together with their anti-phytopathogenic activity, testifies in favor of the bifunctional mode of action of these Se-biopreparations. The application of stimulatory green SeNCs for growth enhancement could be used to increase crop yield. Thus, by combining myco-nanotechnology with the intrinsic biological activity of selenium, an unexpectedly efficient tool for possible applications of SeNCs could be identified.


Asunto(s)
Agaricales , Nanocompuestos , Selenio , Solanum tuberosum , Tubérculos de la Planta , Polímeros , Polisacáridos , Selenio/farmacología
4.
Molecules ; 26(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203966

RESUMEN

Nanoparticle-reinforced polymer-based materials effectively combine the functional properties of polymers and unique characteristic features of NPs. Biopolymers have attained great attention, with perspective multifunctional and high-performance nanocomposites exhibiting a low environmental impact with unique properties, being abundantly available, renewable, and eco-friendly. Nanocomposites of biopolymers are termed green biocomposites. Different biocomposites are reported with numerous inorganic nanofillers, which include selenium. Selenium is a micronutrient that can potentially be used in the prevention and treatment of diseases and has been extensively studied for its biological activity. SeNPs have attracted increasing attention due to their high bioavailability, low toxicity, and novel therapeutic properties. One of the best routes to take advantage of SeNPs' properties is by mixing these NPs with polymers to obtain nanocomposites with functionalities associated with the NPs together with the main characteristics of the polymer matrix. These nanocomposite materials have markedly improved properties achieved at low SeNP concentrations. Composites based on polysaccharides, including fungal beta-glucans, are bioactive, biocompatible, biodegradable, and have exhibited an innovative potential. Mushrooms meet certain obvious requirements for the green entity applied to the SeNP manufacturing. Fungal-matrixed selenium nanoparticles are a new promising biocomposite material. This review aims to give a summary of what is known by now about the mycosynthesized selenium polymeric nanocomposites with the impact on fungal-assisted manufactured ones, the mechanisms of the involved processes at the chemical reaction level, and problems and challenges posed in this area.


Asunto(s)
Biopolímeros/química , Nanopartículas del Metal/química , Selenio/química , Materiales Biocompatibles/química , Disponibilidad Biológica , Hongos , Nanocompuestos/química , Nanopartículas/química , Selenio/metabolismo
5.
J Environ Sci Health B ; 53(7): 464-468, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29624494

RESUMEN

The effect of various pesticides on the biofilm formation by the phytopathogenic bacterium Clavibacter michiganensis ssp. sepedonicus (Cms), the potato ring rot causative agent, was explored for the first time. Systemic herbicides: 2,4-D, diuron, glyphosate, clopyralid, fluorodifen, as well as the commercial preparations "Lazurite," "Ridomil Gold," and the mitochondria inhibiting pesticides analog, sodium monoiodoacetate, were studied. These pesticides' effect on the Cms biofilm formation was shown to be distinct and dependent on the agent under question. Cms biofilm formation was reduced when exposed to sodium monoiodoacetate, as well as "Lazurite" preparation, that could be due to the bactericidal effect of these agents. 2,4-D and "Ridomil Gold" preparation stimulated the biofilm formation. Systemic herbicides diuron, glyphosate, clopyralid, fluorodifen did not exert appreciable influence on the process of bacterial biofilm formation.


Asunto(s)
Actinobacteria/efectos de los fármacos , Plaguicidas/farmacología , Actinobacteria/patogenicidad , Actinobacteria/fisiología , Biopelículas/efectos de los fármacos , Ácido Yodoacético/farmacología , Solanum tuberosum/microbiología
6.
Antioxidants (Basel) ; 12(8)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37627525

RESUMEN

Superoxide is the primary active oxygen form produced in living organisms. Because of superoxide anion radical formation during epinephrine oxidation in alkaline medium, this system is offered in some works for antioxidant activity analysis, however, without enough physicochemical justification. Therefore, the task of developing reliable methods for analyzing the superoxide inhibition activity of various objects is very urgent. In this work, a kinetic model of epinephrine autoxidation in an alkaline medium in the presence of antioxidants of plant origin is proposed. The participation of chain reactions with long oxidation chains in this process is revealed. The limiting stage of the process is a one-electron reduction of oxygen by the anionic forms of the phenolic hydroxyls of epinephrine. The appearance of the absorption maximum at a wavelength of 347 nm during epinephrine autoxidation is associated with adrenolutin formation, which is confirmed by HPLC/UV/MS. No adduct formation between phenolic antioxidants and epinephrine oxidation products was found. The complex U-shaped character of epinephrine autoxidation rate dependence on the content of antioxidants in the reaction system was shown. The study of the kinetics of epinephrine autoxidation in the presence of an individual phenolic plant superoxide inhibitor, chlorogenic acid, was carried out for the first time. The inhibitory effect of yarrow, chamomile, and bur beggar-ticks plant extracts in the adrenaline system was examined.

7.
Antibiotics (Basel) ; 11(9)2022 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-36139936

RESUMEN

Coumarins are a structurally varied set of 2H-chromen-2-one compounds categorized also as members of the benzopyrone group of secondary metabolites. Coumarin derivatives attract interest owing to their wide practical application and the unique reactivity of fused benzene and pyrone ring systems in molecular structure. Coumarins have their own specific fingerprints as antiviral, antimicrobial, antioxidant, anti-inflammatory, antiadipogenic, cytotoxic, apoptosis, antitumor, antitubercular, and cytotoxicity agents. Natural products have played an essential role in filling the pharmaceutical pipeline for thousands of years. Biological effects of natural coumarins have laid the basis of low-toxic and highly effective drugs. Presently, more than 1300 coumarins have been identified in plants, bacteria, and fungi. Fungi as cultivated microbes have provided many of the nature-inspired syntheses of chemically diverse drugs. Endophytic fungi bioactivities attract interest, with applications in fields as diverse as cancer and neuronal injury or degeneration, microbial and parasitic infections, and others. Fungal mycelia produce several classes of bioactive molecules, including a wide group of coumarins. Of promise are further studies of conditions and products of the natural and synthetic coumarins' biotransformation by the fungal cultures, aimed at solving the urgent problem of searching for materials for biomedical engineering. The present review evaluates the fungal coumarins, their structure-related peculiarities, and their future therapeutic potential. Special emphasis has been placed on the coumarins successfully bioprospected from fungi, whereas an industry demand for the same coumarins earlier found in plants has faced hurdles. Considerable attention has also been paid to some aspects of the molecular mechanisms underlying the coumarins' biological activity. The compounds are selected and grouped according to their cytotoxic, anticancer, antibacterial, antifungal, and miscellaneous effects.

8.
ADMET DMPK ; 10(2): 163-179, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35350113

RESUMEN

A series of biorelevant triethylammonium isatin hydrazones containing various substituents in the aromatic fragment have been synthesized. Their structure and composition were confirmed by NMR- and IR-spectroscopies, mass-spectrometry and elemental analysis. It was found that some representatives show activity against Staphylococcus aureus and Bacillus cereus higher or at the level of norfloxacin, including methicillin-resistant Staphylococcus aureus strains. The study also showed low hemo- and cytotoxicity (Chang Liver) and high antiaggregatory and anticoagulant activity of these compounds. The high potential of new ammonium isatin-3-acylhydrazones in the search for antimicrobial activity against phytopathogens of bacterial and fungal nature has been shown for the first time.

9.
Nanomaterials (Basel) ; 11(9)2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34578589

RESUMEN

We studied the effects of new chemically synthesized selenium (Se) nanocomposites (NCs) based on natural polysaccharide matrices arabinogalactan (AG), starch (ST), and kappa-carrageenan (CAR) on the viability of phytopathogen Phytophthora cactorum, rhizospheric bacteria, and potato productivity in the field experiment. Using transmission electron microscopy (TEM), it was shown that the nanocomposites contained nanoparticles varying from 20 to 180 nm in size depending on the type of NC. All three investigated NCs had a fungicidal effect even at the lowest tested concentrations of 50 µg/mL for Se/AG NC (3 µg/mL Se), 35 µg/mL for Se/ST NC (0.5 µg/mL Se), and 39 µg/mL for Se/CAR NC (1.4 µg/mL Se), including concentration of 0.000625% Se (6.25 µg/mL) in the final suspension, which was used to study Se NC effects on bacterial growth of the three common rhizospheric bacteria Acinetobacter guillouiae, Rhodococcus erythropolis and Pseudomonas oryzihabitans isolated from the rhizosphere of plants growing in the Irkutsk Region, Russia. The AG-based Se NC (Se/AG NC) and CAR-based Se NC (Se/CAR NC) exhibited the greatest inhibition of fungal growth up to 60% (at 300 µg/mL) and 49% (at 234 µg/mL), respectively. The safe use of Se NCs against phytopathogens requires them to be environmentally friendly without negative effects on rhizospheric microorganisms. The same concentration of 0.000625% Se (6.25 µg/mL) in the final suspension of all three Se NCs (which corresponds to 105.57 µg/mL for Se/AG NC, 428.08 µg/mL for Se/ST NC and 170.30 µg/mL for Se/CAR NC) was used to study their effect on bacterial growth (bactericidal, bacteriostatic, and biofilm formation effects) of the three rhizospheric bacteria. Based on our earlier studies this concentration had an antibacterial effect against the phytopathogenic bacterium Clavibacter sepedonicus that causes diseases of potato ring rot, but did not negatively affect the viability of potato plants at this concentration. In this study, using this concentration no bacteriostatic and bactericidal activity of all three Se NCs were found against Rhodococcus erythropolis based on the optical density of a bacterial suspension, agar diffusion, and intensity of biofilm formation, but Se/CAR and Se/AG NCs inhibited the growth of Pseudomonas oryzihabitans. The cell growth was decrease by 15-30% during the entire observation period, but the stimulation of biofilm formation by this bacterium was observed for Se/CAR NC. Se/AG NC also had bacteriostatic and antibiofilm effects on the rhizospheric bacterium Acinetobacter guillouiae. There was a 2.5-fold decrease in bacterial growth and a 30% decrease in biofilm formation, but Se/CAR NC stimulated the growth of A. guillouiae. According to the results of the preliminary field test, an increase in potato productivity by an average of 30% was revealed after the pre-planting treatment of tubers by spraying them with Se/AG and Se/CAR NCs with the same concentration of Se of 0.000625% (6.25 µg/mL) in a final suspension. The obtained and previously published results on the positive effect of natural matrix-based Se NCs on plants open up prospects for further investigation of their effects on rhizosphere bacteria and resistance of cultivated plants to stress factors.

10.
Int J Med Mushrooms ; 20(6): 549-560, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29953351

RESUMEN

In this study we elucidate antioxidative properties of the mushroom Ganoderma applanatum (Pers.) Pat. enhanced by submerged culture with para-hydroxyphenolic compounds and tea leaf extracts. The tea extract has been shown to increase to different extents the antioxidative efficiency of para-substituted phenolics, with the most profound effect for 2-(4-hydroxyphenyl)ethane-1-ol (tyrosol). Within the range of physiological concentrations, the symbatic correlation of the antioxidative action of the fungal samples with the volume of tea extract in the submerged culture medium was observed. We propose an approach to obtain, through the use of black tea extracts as the nutrient medium component, large amounts of G. applanatum seeding mycelia; the extract exerts a profound positive effect on the level of phenolic-type antioxidants.


Asunto(s)
Antioxidantes/metabolismo , Camellia sinensis/química , Ganoderma/metabolismo , Fenoles/metabolismo , Extractos Vegetales/metabolismo , Antioxidantes/química , Antioxidantes/aislamiento & purificación , Medios de Cultivo/química , Ganoderma/química , Ganoderma/efectos de los fármacos , Ganoderma/crecimiento & desarrollo , Cromatografía de Gases y Espectrometría de Masas , Peroxidación de Lípido , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química
11.
Biol Trace Elem Res ; 149(1): 97-101, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22528771

RESUMEN

The present paper reports for the first time the transformation of an organic selenium compound into red selenium (Se), which causes the intense red pigmentation of Lentinula edodes (shiitake mushroom) mycelia. The biotransformation of 1,5-diphenyl-3-selenopentanedione-1,5 (diacetophenonyl selenide, preparation DAPS-25) was studied in liquid- and solid-phase cultures of L. edodes. In liquid culture medium, a red color develops in the mycelium at initial DAPS-25 concentrations equal to or higher than 0.1 mmol/l. The intensity and initiation time of coloration is Se concentration-dependent. Semiquantitative data obtained by physicochemical methods on the extent of Se and acetophenone production suggest that L. edodes is able to absorb and/or destruct this organic Se xenobiotic.


Asunto(s)
Compuestos de Organoselenio/metabolismo , Selenio/metabolismo , Hongos Shiitake/metabolismo , Acetofenonas/metabolismo , Biotransformación , Color , Medios de Cultivo/metabolismo , Cromatografía de Gases y Espectrometría de Masas , Micelio/crecimiento & desarrollo , Micelio/metabolismo , Pigmentación , Ácido Selénico , Compuestos de Selenio/metabolismo , Hongos Shiitake/crecimiento & desarrollo , Espectrometría por Rayos X , Xenobióticos/metabolismo
12.
J Biomol Struct Dyn ; 28(6): 969-74, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21469757

RESUMEN

The role of spatial and electron structure, hydrophobic properties and concentration of organoselenium compounds on their interaction with fungal metabolites--extracellular lectins of Lentinula edodes (shiitake mushroom) has been considered. By the hybrid method of density functional theory at the B3LYP/6-31G(d,p) theory level, spatial and electronic structure of the 1,5-diphenyl-3-selenopentanedione-1,5 (preparation DAPS-25), 1,5-di(4-methoxyphenyl)-3-selenopentanedione-1,5 and 1,5-di(4-ethoxyphenyl)-3-selenopentanedione-1,5 molecules has been studied. The above molecules have been stated to be substantially similar to each other by their electronic and spatial characteristics. By means of the QSAR properties evaluation by the atomic-additive schemes, it has been shown that the molecules of the preparation DAPS-25, its dimethoxy- and diethoxy-substituted are close to each other by the hydrophilic-lipophilic balance, whereas di-n-octoxy derivative DAPS-25 is explicitly hydrophobic. The hemagglutinating activity of lectins in the presence of the preparation DAPS-25 and its alkyloxy-substituted increases, therewith the most effective addition is 1,5-di(4-ethoxyphenyl)-3-selenopentanedione-1,5. Apparently, the greater effectiveness of the said substance compared to DAPS -25 is caused by the formation of hydrogen bonds with a participation of unshared electron pairs of oxygen atoms from the ethoxy groups and mobile hydrogen atoms from the OH groups of glycoconjugates on erythrocytes surface. The positive effect of 1,5-di(4-n-octoxyphenyl)-3-selenopentanedione-1,5 is not so prominent, since the enlarged alkyl chain shields the aromatic fragments of organoselenium molecule participating in the binding with lectin.


Asunto(s)
Lectinas/química , Lectinas/metabolismo , Compuestos de Organoselenio/metabolismo , Hongos Shiitake/metabolismo , Electrones , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos de Organoselenio/química , Relación Estructura-Actividad Cuantitativa , Hongos Shiitake/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda