RESUMEN
Due to their high sensitivity and selectivity, low cost, and good compatibility for sensor array integration, colorimetric gas sensors are widely used in hazardous gas detection, food freshness assessment, and gaseous biomarker identification. However, colorimetric gas sensors are usually designed for one-time discrete measurement because the sensing materials are entirely exposed to analytes during the sensing process. The fast consumption of sensing materials limits colorimetric sensors' applications in continuous analytes monitoring, increases the operation complexity and brings challenges for calibration. In this work, we reported a novel sensor design to prolong the lifetime of colorimetric gas sensors by engineering the gas diffusion process to preserve the sensing materials. We compared two geometries for gas diffusion control in a sensing matrix through simulation and experiment on an ammonia sensing platform. We found that the 2-dimensional gas diffusion geometry enabled a better sensor performance, including more stable and higher sensitivity and a more linear response to ammonia concentration compared to 1-dimensional gas diffusion geometry. We also demonstrated the usability of this diffusion-modulated colorimetric sensor for continuous environmental ammonia monitoring.
RESUMEN
Colorimetric sensors are widely used because of their inherent advantages including accuracy, rapid response, ease-of-use, and low costs; however, they usually lack reusability, which precludes the continuous use of a single sensor. We have developed a threshold-responsive colorimetric system that enables repeated analyte measurements by a single colorimetric sensor. The threshold responsive algorithm automatically adjusts the sensor exposure time to the analyte and measurement frequency according to the sensor response. The system registers the colorimetric sensor signal change rate, prevents the colorimetric sensor from reaching saturation, and allows the sensor to fully regenerate before the next measurement is started. The system also addresses issues common to colorimetric sensors, including the response time and range of detection. We demonstrate the benefits and feasibility of this novel system, using colorimetric sensors for ammonia and carbon dioxide gases for continuous monitoring of up to (at least) 60 detection cycles without signs of analytical performance degradation of the sensors.
RESUMEN
Humidity interferes most gas sensors, especially colorimetric sensors. The conventional approaches to minimize the humidity interference in colorimetric gas sensing require using extra components, causing unwanted analytes loss, or limiting the choices of sensing probes to only hydrophobic ones. To explore the possibility of minimizing the humidity interference in a hydrophilic colorimetric sensing system, we have developed a hydrogel-incorporated approach to buffer the humidity influence on the colorimetric gas sensing. The hydrogel-incorporated colorimetric sensors show not only high humidity tolerance but also the improved analytical performance. The accuracy and reliability of the hydrogel-incorporated colorimetric sensors have also been validated in field tests. This hydrogel-incorporated approach will open up an avenue to implement hydrophilic recipes into colorimetric gas sensors and extend the application of colorimetric sensors to humid gases detection.
RESUMEN
Transcutaneous oxygen and carbon dioxide provide the status of pulmonary gas exchange and are of importance in diagnosis and management of respiratory diseases. Though significant progress has been made in oximetry, not much has been explored in developing wearable technologies for continuous monitoring of transcutaneous carbon dioxide. This research reports the development of a truly wearable sensor for continuous monitoring of transcutaneous carbon dioxide using miniaturized nondispersive infrared sensor augmented by hydrophobic membrane to address the humidity interference. The wearable transcutaneous CO2 monitor shows well-behaved response curve to humid CO2 with linear response to CO2 concentration. The profile of transcutaneous CO2 monitored by the wearable device correlates well with the end-tidal CO2 trend in human test. The feasibility of the wearable device for passive and unobstructed tracking of transcutaneous CO2 in free-living conditions has also been demonstrated in field test. The wearable transcutaneous CO2 monitoring technology developed in this research can be widely used in remote assessment of pulmonary gas exchange efficiency for patients with respiratory diseases, such as COVID-19, sleep apnea, and chronic obstructive pulmonary disease (COPD).
RESUMEN
Breathing tracking is critical for the assessment of lung functions, exercise physiologies, and energy expenditure. Conventional methods require using a face mask or mouthpiece that is connected to a stationary equipment through a tube, restricting the location, movement, or even the posture. To obtain accurate breathing physiology parameters that represent the true state of the patient during different scenarios, a wearable technology that has less intervention to patient's activities in free-living conditions is highly preferred. Here, we propose a miniaturized, reliable, and wide-dynamic ranged flow sensing technology that is immune to orientation, movement, and noise. As far as we know, this is the first work of introducing a fully integrated mask device focusing on breath tracking in free-living conditions. There are two key challenges for achieving this goal: miniaturized flow sensing and motion-induced artifacts elimination. To address these challenges, we come up with two technical innovations: 1) in hardware wise, we have designed an integrated flow sensing technique based on differential pressure Pneumotach approach and motion sensing; 2) in software wise, we have developed comprehensive algorithms based baseline tracking and orientation and motion compensation. The effectiveness of the proposed technology has been proven by the experiments. Experimental results from simulator and real breath conditions show high correlation (R2 = 0.9994 and 0.9964 respectively) and mean error within 2.5% for Minute Volume (VE), when compared to values computed from reference methods. These results show that the proposed method is accurate and reliable to track the key breath parameters in free-living conditions.
RESUMEN
Colorimetry detects a color change resulted from a chemical reaction or molecular binding. Despite its widespread use in sensing, continuous monitoring of analytes with colorimetry is difficult, especially when the color-producing reaction or binding is irreversible. Here, we report on a gradient-based colorimetric sensor (GCS) to overcome this limitation. Lateral transport of analytes across a colorimetric sensor surface creates a color gradient that shifts along the transport direction over time, and GCS tracks the gradient shift and converts it into analyte concentration in real time. Using a low cost complementary metal-oxide semiconductor imager and imaging processing algorithm, we show submicrometer gradient shift tracking precision and continuous monitoring of ppb-level ozone.
Asunto(s)
Color , Ozono/análisis , Algoritmos , Colorimetría , SemiconductoresRESUMEN
A miniaturized particulate matter (PM) sensing platform was developed. The platform uses a CMOS imager as sensor, electrostatic particle collector to collect ambient PM on an imaging substrate, and a laser diode as light source to scatter light from the particles. Image processing based PM sensing algorithm was developed to obtain particle number, size and size distribution in real time. The system is compact, power efficient, and low cost. The PM sensing platform is suitable for personal PM exposure monitoring with applications in environmental health, occupational and epidemiological studies.
RESUMEN
An integrated and miniaturized Micro-Gas Chromatography with real-time imaging capability for simultaneous chemical separation and detection was developed. Surface Plasmon Resonance imaging (SPRi) was used as a sensitive and real-time imaging based detector for various gaseous chemical mixtures and good gas chromatographs were obtained. The system integrated a home-made miniaturized molecular sieve packed spiral micro-channel column with the SPRi imaging chip and real-time chemical separation and detection were demonstrated using alkanes. The chemical separation processes were simulated using COMSOL and matched well with experimental results. The system enabled the study of chemical separation processes in real-time by miniaturizing and integrating the Micro-GC separation and detection units. This approach can be expanded to multidimensional GC development.
RESUMEN
The development of connected health devices has allowed for a more accurate assessment of a person's state under free-living conditions. In this work, we use two mobile sensing devices and investigate the correlation between individual's resting metabolic rate (RMR) and volatile organic compounds (VOCs) exposure levels. A total of 17 healthy, young, and sedentary office workers were recruited, measured for RMR with a mobile indirect calorimetry (IC) device, and compared with their corresponding predicted RMR values from the Academy of Nutrition and Dietetics' recommended epidemiological equation, the Mifflinâ»St Jeor equation (MSJE). Individual differences in the RMR values from the IC device and the epidemiological equation were found, and the subjects' RMRs were classified as normal, high, or low based on a cut-off of ±200 kcal/day difference with respect to the predicted value. To study the cause of the difference, VOCs exposure levels of each participant's daytime working environment and nighttime resting environment were assessed using a second mobile sensing device for VOCs exposure detection. The results showed that all sedentary office workers had a low VOCs exposure level (<2 ppmC), and there was no obvious correlation between VOCs exposure and the RMR difference. However, an additional participant who was a worker in an auto repair shop, showed high VOCs exposure with respect to the sedentary office worker population and a significant difference between measured and predicted RMR, with a low RMR of 500 kcal/day difference. The mobile sensing devices have been demonstrated to be suitable for the assessment of direct information of human healthâ»environment interactions at free-living conditions.
Asunto(s)
Metabolismo Basal/efectos de los fármacos , Exposición a Riesgos Ambientales/efectos adversos , Monitoreo Ambulatorio/instrumentación , Compuestos Orgánicos Volátiles/efectos adversos , Adulto , Calorimetría Indirecta , Ambiente , Femenino , Voluntarios Sanos , Humanos , Japón , Masculino , Conducta Sedentaria , Adulto JovenRESUMEN
We present a new method of chemical quantification utilizing thermal analysis for the detection of relative humidity. By measuring the temperature change of a hydrophilically-modified temperature sensing element vs. a hydrophobically-modified reference element, the total heat from chemical interactions in the sensing element can be measured and used to calculate a change in relative humidity. We have probed the concept by assuming constant temperature streams, and having constant reference humidity (~0% in this case). The concept has been probed with the two methods presented here: (1) a thermistor-based method and (2) a thermographic method. For the first method, a hydrophilically-modified thermistor was used, and a detection range of 0-75% relative humidity was demonstrated. For the second method, a hydrophilically-modified disposable surface (sensing element) and thermal camera were used, and thermal signatures for different relative humidity were demonstrated. These new methods offer opportunities in either chemically harsh environments or in rapidly changing environments. For sensing humidity in a chemically harsh environment, a hydrophilically-modified thermistor can provide a sensing method, eliminating the exposure of metallic contacts, which can be easily corroded by the environment. On the other hand, the thermographic method can be applied with a disposable non-contact sensing element, which is a low-cost upkeep option in environments where damage or fouling is inevitable. In addition, for environments that are rapidly changing, the thermographic method could potentially provide a very rapid humidity measurement as the chemical interactions are rapid and their changes are easily quantified.
RESUMEN
A novel portable wireless volatile organic compound (VOC) monitoring device with disposable sensors is presented. The device is miniaturized, light, easy-to-use, and cost-effective. Different field tests have been carried out to identify the operational, analytical, and functional performance of the device and its sensors. The device was compared to a commercial photo-ionization detector, gas chromatography-mass spectrometry, and carbon monoxide detector. In addition, environmental operational conditions, such as barometric change, temperature change and wind conditions were also tested to evaluate the device performance. The multiple comparisons and tests indicate that the proposed VOC device is adequate to characterize personal exposure in many real-world scenarios and is applicable for personal daily use.
Asunto(s)
Monitoreo del Ambiente/instrumentación , Compuestos Orgánicos Volátiles/análisis , Dispositivos Electrónicos Vestibles , Tecnología Inalámbrica , Contaminantes Atmosféricos/análisis , Calibración , Monóxido de Carbono/análisis , Diseño de Equipo , Cromatografía de Gases y Espectrometría de Masas , Humanos , Hidrocarburos/análisis , Sulfuro de Hidrógeno/análisis , Reproducibilidad de los Resultados , Temperatura , VientoRESUMEN
BACKGROUND: Ketogenic diets are high fat and low carbohydrate or very low carbohydrate diets, which render high production of ketones upon consumption known as nutritional ketosis (NK). Ketosis is also produced during fasting periods, which is known as fasting ketosis (FK). Recently, the combinations of NK and FK, as well as NK alone, have been used as resources for weight loss management and treatment of epilepsy. METHODS: A crossover study design was applied to 11 healthy individuals, who maintained moderately sedentary lifestyle, and consumed three types of diet randomly assigned over a three-week period. All participants completed the diets in a randomized and counterbalanced fashion. Each weekly diet protocol included three phases: Phase 1 - A mixed diet with ratio of fat: (carbohydrate + protein) by mass of 0.18 or the equivalence of 29% energy from fat from Day 1 to Day 5. Phase 2- A mixed or a high-fat diet with ratio of fat: (carbohydrate + protein) by mass of approximately 0.18, 1.63, or 3.80 on Day 6 or the equivalence of 29%, 79%, or 90% energy from fat, respectively. Phase 3 - A fasting diet with no calorie intake on Day 7. Caloric intake from diets on Day 1 to Day 6 was equal to each individual's energy expenditure. On Day 7, ketone buildup from FK was measured. RESULTS: A statistically significant effect of Phase 2 (Day 6) diet was found on FK of Day 7, as indicated by repeated analysis of variance (ANOVA), F(2,20) = 6.73, p < 0.0058. Using a Fisher LDS pair-wise comparison, higher significant levels of acetone buildup were found for diets with 79% fat content and 90% fat content vs. 29% fat content (with p = 0.00159**, and 0.04435**, respectively), with no significant difference between diets with 79% fat content and 90% fat content. In addition, independent of the diet, a significantly higher ketone buildup capability of subjects with higher resting energy expenditure (R(2) = 0.92), and lower body mass index (R(2) = 0.71) was observed during FK.
Asunto(s)
Acetona/sangre , Acetona/orina , Biomarcadores/sangre , Grasas de la Dieta/administración & dosificación , Cetosis/sangre , Inanición/sangre , Adulto , Glucemia/metabolismo , Pruebas Respiratorias , Estudios Cruzados , Dieta Baja en Carbohidratos , Dieta Cetogénica , Carbohidratos de la Dieta/administración & dosificación , Proteínas en la Dieta/administración & dosificación , Ingestión de Energía , Metabolismo Energético , Ayuno , Femenino , Voluntarios Sanos , Humanos , Cetosis/diagnóstico , Masculino , Conducta Sedentaria , Encuestas y Cuestionarios , Pérdida de Peso , Adulto JovenRESUMEN
To be able to detect carbon dioxide (CO2) with high accuracy and fast response time is critical for many health and environmental applications. We report on a pocket-sized CO2 sensor for real-time analysis of end-tidal CO2, and environmental CO2. The sensor shows fast and reversible response to CO2 over a wide concentration range, covering the needs of both environmental and health applications. It is also immune to the presence of various interfering gases in ambient or expired air. Furthermore, the sensor has been used for real-time breath analysis, and the results are in good agreement with those from a commercial CO2 detector.
RESUMEN
A hybrid sensor for monitoring volatile organic compounds (VOCs) in air is developed. The device combines two orthogonal sensing principles, selective molecular binding with a microfabricated quartz tuning fork detector and separation of analytes with a column. The tuning fork detector is functionalized with molecular imprinted polymers for selective binding to benzene, toluene, ethylbenzene, and xylenes (BTEX), and the separation column provides further discrimination of the analytes for real world complex sample analysis. The device is wireless, portable, battery-powered, and cell-phone operated, and it allows reliable detection in parts per billion (ppb) by volume-levels of BTEX in the presence of complex interferents. The hybrid device is suitable for occupational, environmental health, and epidemiological applications.
RESUMEN
Various innovative chemical sensors have been developed in recent years to sense dangerous substances in air and trace biomarkers in breath. However, in order to solve real world problems, the sensors must be equipped with efficient sample conditioning that can, e.g., control the humidity, which is discussed much less in the literature. To meet the demand, a miniaturized mouthpiece was developed for personal breath analyzers. A key function of the mouthpiece is to condition the humidity in real breath samples without changing the analyte concentrations and introducing substantial backpressure, which is achieved with optimized packing of desiccant particles. Numerical simulations were carried out to determine the performance of the mouthpiece in terms of various controllable parameters, such as the size, density, and geometry of the packing. Mouthpieces with different configurations were built and tested, and the experimental data validated the simulation findings. A mouthpiece with optimized performance reducing relative humidity from 95% (27,000 ppmV) to 29% (8000 ppmV) whereas retaining 92% nitric oxide (50 ppbV to 46 ppbV) was built and integrated into a hand-held exhaled nitric oxide sensor, and the performance of exhaled nitric oxide measurement was in good agreement with the gold standard chemiluminescence technique. Acetone, carbon dioxide, oxygen, and ammonia samples were also measured after passing through the desiccant mouthpiece using commercial sensors to examine wide applicability of this breath conditioning approach.
Asunto(s)
Pruebas Respiratorias/instrumentación , Miniaturización/instrumentación , Sistemas en Línea , Humedad , Modelos Teóricos , Boca , Tamaño de la Partícula , Reproducibilidad de los ResultadosRESUMEN
To improve our understanding of indoor and outdoor personal exposures to common environmental toxicants released into the environment, new technologies that can monitor and quantify the toxicants anytime anywhere are needed. This paper presents a wearable sensor to provide such capabilities. The sensor can communicate with a common smart phone and provides accurate measurement of volatile organic compound concentration at a personal level in real time, providing environmental toxicants data every three minutes. The sensor has high specificity and sensitivity to aromatic, alkyl, and chlorinated hydrocarbons with a resolution as low as 4 parts per billion (ppb), with a detection range of 4 ppb to 1000 ppm (parts per million). The sensor's performance was validated using Gas Chromatography and Selected Ion Flow Tube - Mass Spectrometry reference methods in a variety of environments and activities with overall accuracy higher than 81% (r(2) > 0.9). Field tests examined personal exposure in various scenarios including: indoor and outdoor environments, traffic exposure in different cities which vary from 0 to 50 ppmC (part-per-million carbon from hydrocarbons), and pollutants near the 2010 Deepwater Horizon's oil spill. These field tests not only validated the performance but also demonstrated unprecedented high temporal and spatial toxicant information provided by the new technology.
RESUMEN
Real-time detection of trace chemicals, such as explosives, in a complex environment containing various interferents has been a difficult challenge. We describe here a hybrid nanosensor based on the electrochemical reduction of TNT and the interaction of the reduction products with conducting polymer nanojunctions in an ionic liquid. The sensor simultaneously measures the electrochemical current from the reduction of TNT and the conductance change of the polymer nanojunction caused from the reduction product. The hybrid detection mechanism, together with the unique selective preconcentration capability of the ionic liquid, provides a selective, fast, and sensitive detection of TNT. The sensor, in its current form, is capable of detecting parts-per-trillion level TNT in the presence of various interferents within a few minutes.
Asunto(s)
Conductometría/instrumentación , Electroquímica/métodos , Monitoreo del Ambiente/instrumentación , Monitoreo del Ambiente/métodos , Nanotecnología/métodos , Polímeros/química , Cromatografía Líquida de Alta Presión , Electrólitos , Sustancias Explosivas , Iones , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Using a camera as an optical sensor to monitor physiological parameters has garnered considerable research interest in biomedical engineering in recent decades. Researchers have explored the use of a camera for monitoring a variety of physiological waveforms, together with the vital signs carried by these waveforms. Most of the obtained waveforms are related to the human respiratory and cardiovascular systems, and in addition of being indicative of overall health, they can also detect early signs of certain diseases. While using a camera for noncontact physiological signal monitoring offers the advantages of low cost and operational ease, it also has the disadvantages such as vulnerability to motion and lack of burden-free calibration solutions in some use cases. This study presents an overview of the existing camera-based methods that have been reported in recent years. It introduces the physiological principles behind these methods, signal acquisition approaches, various types of acquired signals, data processing algorithms, and application scenarios of these methods. It also discusses the technological gaps between the camera-based methods and traditional medical techniques, which are mostly contact-based. Furthermore, we present the manner in which noncontact physiological signal monitoring use has been extended, particularly over the recent years, to more day-to-day aspects of individuals' lives, so as to go beyond the more conventional use case scenarios. We also report on the development of novel approaches that facilitate easier measurement of less often monitored and recorded physiological signals. These have the potential of ushering a host of new medical and lifestyle applications. We hope this study can provide useful information to the researchers in the noncontact physiological signal measurement community.
Asunto(s)
Algoritmos , Humanos , Monitoreo FisiológicoRESUMEN
Neuromonitoring in naturalistic environments is of increasing interest for a variety of research fields including psychology, economics, and productivity. Among functional neuromonitoring modalities, functional near-infrared spectroscopy (fNIRS) is well regarded for its potential for miniaturization, good spatial and temporal resolutions, and resilience to motion artifacts. Historically, the large size and high cost of fNIRS systems have precluded widespread adoption of the technology. In this article, we describe the first open source, fully integrated wireless fNIRS headband system with a single LED-pair source and four detectors. With ease of operation and comfort in mind, the system is encased in a soft, lightweight cloth and silicone enclosure. Accompanying computer and smartphone data collection software have also been provided, and the hardware has been validated using classic fNIRS tasks. This wear-and-go design can easily be scaled to accommodate a larger number of fNIRS channels and opens the door to easily collecting fNIRS data during routine activities in naturalistic conditions.
RESUMEN
Colorimetric sensing technologies have been widely used for both quantitative detection of specific analyte and recognition of a large set of analytes in gas phase, ranging from environmental chemicals to biomarkers in breath. However, the accuracy and reliability of the colorimetric gas sensors are threatened by the humidity interference in different application scenarios. Though substantial progress has been made toward new colorimetric sensors development, unless the humidity interference is well addressed, the colorimetric sensors cannot be deployed for real-world applications. Although there are comprehensive and insightful review articles about the colorimetric gas sensors, they have focused more on the progress in new sensing materials, new sensing systems, and new applications. There is a need for reviewing the works that have been done to solve the humidity issue, a challenge that the colorimetric gas sensors commonly face. In this review paper, we analyzed the mechanisms of the humidity interference and discussed the approaches that have been reported to mitigate the humidity interference in colorimetric sensing of environmental gases and breath biomarkers. Finally, the future perspectives of colorimetric sensing technologies are also discussed.