Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Plant Cell Rep ; 37(11): 1499-1511, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30014159

RESUMEN

KEY MESSAGE: AtDIV2 integrates ABA signaling to negatively regulate salt stress in Arabidopsis. AmDIV (DIVARICATA) is a functional MYB transcription factor (TF) that regulates ventral identity during floral development in Antirrhinum. There are six members of DIV homologs in Arabidopsis; however, the functions of these proteins are largely unknown. Here, we characterized an R-R-type MYB TF AtDIV2, which is involved in salt stress responses and abscisic acid (ABA) signaling. Although universally expressed in tissues, the nuclear-localized AtDIV2 appeared not to be involved in seedling development processes. However, upon exposure to salt stress and exogenous ABA, the transcripts of AtDIV2 are markedly increased in wild-type (Wt) plants. The loss-of-function mutant div2 displayed much more tolerance to salt stress, and several salt-responsive genes were up-regulated. In addition, the div2 mutant showed higher sensitivity to ABA during seed germination. And the germination variance between the Wt and div2 mutant cannot be rectified by treatment with both ABA and sodium tungstate at the same time. ELISA results showed that the endogenous ABA content in the div2 mutant is clearly increased than that in Wt plants. Furthermore, the transcriptional expressions of several ABA-related genes, including ABA1 and ABI3, were elevated. Taken together, our results suggest that the R-R-type MYB TF AtDIV2 plays negative roles in salt stress and is required for ABA signaling in Arabidopsis.


Asunto(s)
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/genética , Germinación , Mutación , Salinidad , Semillas/genética , Semillas/fisiología , Estrés Fisiológico , Factores de Transcripción/genética
2.
Theranostics ; 14(10): 3927-3944, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38994017

RESUMEN

Rationale: Myocardial infarction (MI) is a severe global clinical condition with widespread prevalence. The adult mammalian heart's limited capacity to generate new cardiomyocytes (CMs) in response to injury remains a primary obstacle in developing effective therapies. Current approaches focus on inducing the proliferation of existing CMs through cell-cycle reentry. However, this method primarily elevates cyclin dependent kinase 6 (CDK6) and DNA content, lacking proper cytokinesis and resulting in the formation of dysfunctional binucleated CMs. Cytokinesis is dependent on ribosome biogenesis (Ribo-bio), a crucial process modulated by nucleolin (Ncl). Our objective was to identify a novel approach that promotes both DNA synthesis and cytokinesis. Methods: Various techniques, including RNA/protein-sequencing analysis, Ribo-Halo, Ribo-disome, flow cytometry, and cardiac-specific tumor-suppressor retinoblastoma-1 (Rb1) knockout mice, were employed to assess the series signaling of proliferation/cell-cycle reentry and Ribo-bio/cytokinesis. Echocardiography, confocal imaging, and histology were utilized to evaluate cardiac function. Results: Analysis revealed significantly elevated levels of Rb1, bur decreased levels of circASXL1 in the hearts of MI mice compared to control mice. Deletion of Rb1 induces solely cell-cycle reentry, while augmenting the Ribo-bio modulator Ncl leads to cytokinesis. Mechanically, bioinformatics and the loss/gain studies uncovered that circASXL1/CDK6/Rb1 regulates cell-cycle reentry. Moreover, Ribo-Halo, Ribo-disome and circRNA pull-down assays demonstrated that circASXL1 promotes cytokinesis through Ncl/Ribo-bio. Importantly, exosomes derived from umbilical cord mesenchymal stem cells (UMSC-Exo) had the ability to enhance cardiac function by facilitating the coordinated signaling of cell-cycle reentry and Ribo-bio/cytokinesis. These effects were attenuated by silencing circASXL1 in UMSC-Exo. Conclusion: The series signaling of circASXL1/CDK6/Rb1/cell-cycle reentry and circASXL1/Ncl/Ribo-bio/cytokinesis plays a crucial role in cardiac repair. UMSC-Exo effectively repairs infarcted myocardium by stimulating CM cell-cycle reentry and cytokinesis in a circASXL1-dependent manner. This study provides innovative therapeutic strategies targeting the circASXL1 signaling network for MI and offering potential avenues for enhanced cardiac repair.


Asunto(s)
Ciclo Celular , Citocinesis , Ratones Noqueados , Infarto del Miocardio , Miocitos Cardíacos , Ribosomas , Animales , Ratones , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Ribosomas/metabolismo , Fosfoproteínas/metabolismo , Fosfoproteínas/genética , Nucleolina , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética , Proteína de Retinoblastoma/metabolismo , Proteína de Retinoblastoma/genética , Proliferación Celular , Masculino , Humanos
3.
Signal Transduct Target Ther ; 8(1): 15, 2023 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-36617563

RESUMEN

The ribosome is a multi-unit complex that translates mRNA into protein. Ribosome biogenesis is the process that generates ribosomes and plays an essential role in cell proliferation, differentiation, apoptosis, development, and transformation. The mTORC1, Myc, and noncoding RNA signaling pathways are the primary mediators that work jointly with RNA polymerases and ribosome proteins to control ribosome biogenesis and protein synthesis. Activation of mTORC1 is required for normal fetal growth and development and tissue regeneration after birth. Myc is implicated in cancer development by enhancing RNA Pol II activity, leading to uncontrolled cancer cell growth. The deregulation of noncoding RNAs such as microRNAs, long noncoding RNAs, and circular RNAs is involved in developing blood, neurodegenerative diseases, and atherosclerosis. We review the similarities and differences between eukaryotic and bacterial ribosomes and the molecular mechanism of ribosome-targeting antibiotics and bacterial resistance. We also review the most recent findings of ribosome dysfunction in COVID-19 and other conditions and discuss the consequences of ribosome frameshifting, ribosome-stalling, and ribosome-collision. We summarize the role of ribosome biogenesis in the development of various diseases. Furthermore, we review the current clinical trials, prospective vaccines for COVID-19, and therapies targeting ribosome biogenesis in cancer, cardiovascular disease, aging, and neurodegenerative disease.


Asunto(s)
COVID-19 , Neoplasias , Enfermedades Neurodegenerativas , Humanos , Embarazo , Femenino , Vacunas contra la COVID-19/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , COVID-19/metabolismo , Ribosomas/genética , Proteínas Ribosómicas/genética , Neoplasias/tratamiento farmacológico , Neoplasias/genética , ARN no Traducido , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo
4.
J Cardiovasc Transl Res ; 15(3): 524-534, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35484464

RESUMEN

Ischemic diseases are life-threatening, and the incidence increases as people's lifestyles change. Medications and surgical intervention offer limited benefit, and stem cell therapy has emerged as a potential approach for treating ischemic diseases. The exosomes secreted by stem cells have attracted more attention because they do not trigger the immune response and can be used as drug carriers. The non-coding RNA (ncRNA) carried by exosomes plays a key role in mediating exosome's beneficial effect, which can be further enhanced when combined with nanomaterials to improve its retention time. Here, we review the downstream target molecules and signal pathways of ncRNA and summarize recent advances of some nanomaterials used to encapsulate exosomes and promote ischemic tissue repair. We highlight the imprinting of exosomes from parent cells and discuss how the inflammasome pathway may be targeted for the development of novel therapy for ischemic diseases.


Asunto(s)
Exosomas , Exosomas/metabolismo , Humanos , Isquemia/metabolismo , Isquemia/cirugía , Transducción de Señal , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda