RESUMEN
Virtual reality (VR) allows to create controlled scenarios in which the quantity of stimuli can be modulated, as happen in real-life, where humans are subjected to various multisensory-often overlapping-stimuli. The present research aimed to study changes in attentional processes within an auditory oddball paradigm during a virtual exploration, while varying the amount of distractors. Twenty healthy volunteers underwent electroencephalography (EEG) during three different experimental conditions: an auditory oddball without VR (No-VR condition), an auditory oddball during VR exploration without distractors (VR-Empty condition), and an auditory oddball during VR exploration with a high level of distractors (VR-Full condition). Event-related potentials (ERPs) were computed averaging epochs of EEGs and analyzing peaks at 100 ms (N100) and 300 ms (P300) latencies. Results showed modulation of N100 amplitude in Fz and of P300 amplitude in Pz. Statistically significant differences in latency were observed only for P300 where the latency results delayed from the No-VR to VR-Full. The scalp topography revealed for P100 no significant differences between frequent and rare stimuli in either the No-VR and VR-Empty conditions. However, significant results were found in N100 in VR-Full condition. For P300, results showed differences between frequent and rare stimuli, in every condition. However, this difference is gradually less widespread from No-VR condition to the VR-Full. The emerging integration of VR with EEG may have important implications for studying brain attentional processing.