Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Circulation ; 149(21): 1650-1666, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38344825

RESUMEN

BACKGROUND: Much of our knowledge of organ rejection after transplantation is derived from rodent models. METHODS: We used single-nucleus RNA sequencing to investigate the inflammatory myocardial microenvironment in human pediatric cardiac allografts at different stages after transplantation. We distinguished donor- from recipient-derived cells using naturally occurring genetic variants embedded in single-nucleus RNA sequencing data. RESULTS: Donor-derived tissue resident macrophages, which accompany the allograft into the recipient, are lost over time after transplantation. In contrast, monocyte-derived macrophages from the recipient populate the heart within days after transplantation and form 2 macrophage populations: recipient MP1 and recipient MP2. Recipient MP2s have cell signatures similar to donor-derived resident macrophages; however, they lack signatures of pro-reparative phagocytic activity typical of donor-derived resident macrophages and instead express profibrotic genes. In contrast, recipient MP1s express genes consistent with hallmarks of cellular rejection. Our data suggest that recipient MP1s activate a subset of natural killer cells, turning them into a cytotoxic cell population through feed-forward signaling between recipient MP1s and natural killer cells. CONCLUSIONS: Our findings reveal an imbalance of donor-derived and recipient-derived macrophages in the pediatric cardiac allograft that contributes to allograft failure.


Asunto(s)
Aloinjertos , Rechazo de Injerto , Trasplante de Corazón , Macrófagos , Humanos , Trasplante de Corazón/efectos adversos , Macrófagos/metabolismo , Rechazo de Injerto/inmunología , Rechazo de Injerto/genética , Masculino , Femenino , Niño , Preescolar , Miocardio/patología , Supervivencia de Injerto , Lactante , Células Asesinas Naturales/inmunología , Células Asesinas Naturales/metabolismo , Adolescente
2.
bioRxiv ; 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38196630

RESUMEN

The right ventricle (RV) is one of the four pumping chambers of the heart, pumping blood to the lungs. In severe forms of congenital heart disease and pulmonary hypertension, the RV is made to pump into the systemic circulation. Such systemic RVs typically display early failure due to pressure overload. In rare cases a systemic RV persists into later decades of life - colloquially called a 'Super RV'. Here we present the single-nucleus transcriptome of a systemic RV from a 60-year-old with congenitally corrected transposition of great arteries (ccTGA). Our data shows two specific signaling pathways enriched in the ccTGA RV myocardium. First, we show increased insulin like growth factor (IGF1) signaling within the systemic RV myocardium: there is increased expression of the main receptor IGFR1 within the cardiomyocytes, and IGF1 ligands within the cardiofibroblasts and macrophages. Second, we find increased VEGF and Wnt9 ligand expression in cardiomyocytes and increased VEGF1R and Wnt9 receptors in endothelial cells, which are implicated in angiogenesis. We show that increased insulin and angiogenesis signaling are potentially beneficial RV adaptations to increased pressure overload. This study of an adult systemic RV provides an important framework for understanding RV remodeling to systemic pressures in congenital heart disease and pulmonary hypertension.

3.
bioRxiv ; 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38352607

RESUMEN

Hypertrophic cardiomyopathy (HCM) is a relatively rare but debilitating diagnosis in the pediatric population and patients with end-stage HCM require heart transplantation. In this study, we performed single-nucleus RNA sequencing on pediatric HCM and control myocardium. We identified distinct underling cellular processes in pediatric, end-stage HCM in cardiomyocytes, fibroblasts, endothelial cells, and myeloid cells, compared to controls. Pediatric HCM was enriched in cardiomyocytes exhibiting "stressed" myocardium gene signatures and underlying pathways associated with cardiac hypertrophy. Cardiac fibroblasts exhibited clear activation signatures and heightened downstream processes associated with fibrosis, more so than adult counterparts. There was notable depletion of tissue-resident macrophages, and increased vascular remodeling in endothelial cells. Our analysis provides the first single nuclei analysis focused on end-stage pediatric HCM.

4.
Life Sci Alliance ; 7(2)2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38012001

RESUMEN

Modulation of the heart's immune microenvironment is crucial for recovery after ischemic events such as myocardial infarction (MI). Endothelial cells (ECs) can have immune regulatory functions; however, interactions between ECs and the immune environment in the heart after MI remain poorly understood. We identified an EC-specific IFN responsive and immune regulatory gene signature in adult and pediatric heart failure (HF) tissues. Single-cell transcriptomic analysis of murine hearts subjected to MI uncovered an EC population (IFN-ECs) with immunologic gene signatures similar to those in human HF. IFN-ECs were enriched in regenerative-stage mouse hearts and expressed genes encoding immune responsive transcription factors (Irf7, Batf2, and Stat1). Single-cell chromatin accessibility studies revealed an enrichment of these TF motifs at IFN-EC signature genes. Expression of immune regulatory ligand genes by IFN-ECs suggests bidirectional signaling between IFN-ECs and macrophages in regenerative-stage hearts. Our data suggest that ECs may adopt immune regulatory signatures after cardiac injury to accompany the reparative response. The presence of these signatures in human HF and murine MI models suggests a potential role for EC-mediated immune regulation in responding to stress induced by acute injury in MI and chronic adverse remodeling in HF.


Asunto(s)
Insuficiencia Cardíaca , Infarto del Miocardio , Ratones , Humanos , Animales , Niño , Células Endoteliales/metabolismo , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Corazón , Transducción de Señal/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda