Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Biochemistry (Mosc) ; 88(2): 231-252, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37072324

RESUMEN

Single-cell RNA sequencing (scRNA-seq) is a revolutionary tool for studying the physiology of normal and pathologically altered tissues. This approach provides information about molecular features (gene expression, mutations, chromatin accessibility, etc.) of cells, opens up the possibility to analyze the trajectories/phylogeny of cell differentiation and cell-cell interactions, and helps in discovery of new cell types and previously unexplored processes. From a clinical point of view, scRNA-seq facilitates deeper and more detailed analysis of molecular mechanisms of diseases and serves as a basis for the development of new preventive, diagnostic, and therapeutic strategies. The review describes different approaches to the analysis of scRNA-seq data, discusses the advantages and disadvantages of bioinformatics tools, provides recommendations and examples of their successful use, and suggests potential directions for improvement. We also emphasize the need for creating new protocols, including multiomics ones, for the preparation of DNA/RNA libraries of single cells with the purpose of more complete understanding of individual cells.


Asunto(s)
Perfilación de la Expresión Génica , ARN , Perfilación de la Expresión Génica/métodos , ARN/genética , Diferenciación Celular , Biblioteca de Genes , Análisis de Secuencia de ARN/métodos
2.
Int J Mol Sci ; 21(12)2020 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-32580466

RESUMEN

Multipotent stromal cells (MSC) demonstrate remarkable functional heterogeneity; however, its molecular mechanisms remain largely obscure. In this study, we explored MSC response to hormones, which activate Gs-protein / cyclic AMP (cAMP) / protein kinase A (PKA) dependent signaling, at the single cell level using genetically encoded biosensor PKA-Spark. For the first time, we demonstrated that about half of cultured MSCs are not able to activate the cAMP/PKA pathway, possibly due to the limited availability of adenylyl cyclases. Using this approach, we showed that MSC subpopulations responding to various hormones largely overlapped, and the share of responding cells did not exceed 40%. Using clonal analysis, we showed that signaling heterogeneity of MSC could be formed de novo within 2 weeks.


Asunto(s)
Adenilil Ciclasas/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/clasificación , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hormonas/farmacología , Células Madre Mesenquimatosas/metabolismo , Adenilil Ciclasas/genética , Células Cultivadas , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Humanos , Células Madre Mesenquimatosas/efectos de los fármacos , Transducción de Señal
3.
Biol Chem ; 399(5): 437-446, 2018 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-29373314

RESUMEN

Duox2 belongs to the large family of NADPH-oxidase enzymes that are implicated in immune response, vasoregulation, hormone synthesis, cell growth and differentiation via the regulated synthesis of H2O2 and reactive oxygen species. We and others have shown that Duox2 and H2O2 are involved in platelet-derived growth factor (PDGF) induced migration of fibroblasts. Now, using the CRISPR/Cas9-mediated genome editing we demonstrate that the extreme C-terminal region of Duox2 is required for PDGF-stimulated activity of Duox2 and H2O2 production. We generated the fibroblast cells that stably co-express the wild-type or C-terminally modified Duox2 and fluorescent H2O2 probe Hyper. We found that nonsense substitution of the last 23 amino acids in Duox2 results in complete loss of PDGF stimulation of intracellular H2O2 and fibroblast migration, yet these mutations have no effects on the expression of Duox2 and other NADPH-oxidases in cells. These findings illustrate for the first time that the extreme C-terminus of Duox2 is required for the functional activity of the enzyme. Furthermore, the conservative nature of the C-terminus suggests its role for activity in other NADPH-oxidases.


Asunto(s)
Sistemas CRISPR-Cas/genética , Oxidasas Duales/metabolismo , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Animales , Movimiento Celular , Células Cultivadas , Oxidasas Duales/genética , Fibroblastos/metabolismo , Ratones , Mutación , Células 3T3 NIH
4.
Int J Mol Sci ; 19(12)2018 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-30469522

RESUMEN

Primary adipose tissue-derived multipotent stem/stromal cells (adMSCs) demonstrate unusual signaling regulatory mechanisms, i.e., increased of sensitivity to catecholamines in response to noradrenaline. This phenomenon is called "heterologous sensitization", and was previously found only in embryonic cells. Since further elucidation of the molecular mechanisms that are responsible for such sensitization in primary adMSCs was difficult due to the high heterogeneity in adrenergic receptor expression, we employed immortalized adipose-derived mesenchymal stem cell lines (hTERT-MSCs). Using flow cytometry and immunofluorescence microscopy, we demonstrated that the proportion of cells expressing adrenergic receptor isoforms does not differ significantly in hTERT-MSCs cells compared to the primary adMSCs culture. However, using analysis of Ca2+-mobilization in single cells, we found that these cells did not demonstrate the sensitization seen in primary adMSCs. Consistently, these cells did not activate cAMP synthesis in response to noradrenaline. These data indicate that immortalized adipose-derived mesenchymal stem cell lines demonstrated impaired ability to respond to noradrenaline compared to primary adMSCs. These data draw attention to the usage of immortalized cells for MSCs-based regenerative medicine, especially in the field of pharmacology.


Asunto(s)
Agonistas alfa-Adrenérgicos/farmacología , Células Madre Mesenquimatosas/efectos de los fármacos , Norepinefrina/farmacología , Tejido Adiposo/citología , Señalización del Calcio , Línea Celular , Células Cultivadas , AMP Cíclico/metabolismo , Humanos , Células Madre Mesenquimatosas/metabolismo
5.
Biochim Biophys Acta ; 1843(9): 1899-908, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24841820

RESUMEN

Cultured mesenchymal stromal cells (MSCs) from different sources represent a heterogeneous population of proliferating non-differentiated cells that contains multipotent stem cells capable of originating a variety of mesenchymal cell lineages. Despite tremendous progress in MSC biology spurred by their therapeutic potential, current knowledge on receptor and signaling systems of MSCs is mediocre. Here we isolated MSCs from the human adipose tissue and assayed their responsivity to GPCR agonists with Ca(2+) imaging. As a whole, a MSC population exhibited functional heterogeneity. Although a variety of first messengers was capable of stimulating Ca(2+) signaling in MSCs, only a relatively small group of cells was specifically responsive to the particular GPCR agonist, including noradrenaline. RT-PCR and immunocytochemistry revealed expression of α1B-, α2A-, and ß2-adrenoreceptors in MSCs. Their sensitivity to subtype-specific adrenergic agonists/antagonists and certain inhibitors of Ca(2+) signaling indicated that largely the α2A-isoform coupled to PLC endowed MSCs with sensitivity to noradrenaline. The all-or-nothing dose-dependence was characteristic of responsivity of robust adrenergic MSCs. Noradrenaline never elicited small or intermediate responses but initiated large and quite similar Ca(2+) transients at all concentrations above the threshold. The inhibitory analysis and Ca(2+) uncaging implicated Ca(2+)-induced Ca(2+) release (CICR) in shaping Ca(2+) signals elicited by noradrenaline. Evidence favored IP3 receptors as predominantly responsible for CICR. Based on the overall findings, we inferred that adrenergic transduction in MSCs includes two fundamentally different stages: noradrenaline initially triggers a local and relatively small Ca(2+) signal, which next stimulates CICR, thereby being converted into a global Ca(2+) signal.


Asunto(s)
Tejido Adiposo/citología , Células Madre Mesenquimatosas/metabolismo , Receptores Adrenérgicos/metabolismo , Agonistas Adrenérgicos/farmacología , Antagonistas Adrenérgicos/farmacología , Adulto , Calcio/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Persona de Mediana Edad , Modelos Biológicos , Norepinefrina/metabolismo , Fosfatidilinositoles/metabolismo , Transducción de Señal/efectos de los fármacos
6.
MethodsX ; 12: 102587, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38328505

RESUMEN

Stem and progenitor cells are characterized by peculiar mechanisms of hormonal regulation. Here we describe a protocol of analysis of hormonal cross-talk in adipose tissue derived multipotent mesenchymal stem cells (MSCs). Specifically, cells were treated by a "sensitizing" hormone/neuromediator followed by the measurement of cellular Ca2+ response to the "readout" hormone after various time intervals. This protocol was successfully used in studies demonstrating a permissive effect of noradrenaline and 5-HT on MSCs sensitivity to noradrenaline, which is a predictive marker of the development of obesity-associated arterial hypertension.

7.
Biochim Biophys Acta Mol Cell Res ; 1871(2): 119651, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38086448

RESUMEN

Hypertension is one of the major life-threatening complications of obesity. Recently adipose multipotent mesenchymal stromal cells (MSCs) were implicated to the pathogenesis of obesity-associated hypertension. These cells amplify noradrenaline-induced vascular cell contraction via cAMP-mediated signaling pathway. In this study we tested the ability of several cAMP-mediated hormones to affect the adrenergic sensitivity of MSCs and their associated contractility. Despite that adipose MSCs express a plethora of receptors capable of cAMP signaling activation, only 5-HT was able to elevate α1A-adrenoceptor-induced Ca2+ signaling in MSCs. Furthermore, 5-HT markedly enhanced noradrenaline-induced MSCs contractility. Using HTR isoform-specific antagonists followed by CRISPRi-mediated knockdown, we identified that the observed 5-HT effect on MSCs was mediated by the HTR6 isoform. This receptor was previously associated exclusively with 5-HT central nervous system activity. Discovered effect of HTR6 on MSCs contractility points to it as a potential therapeutic target for the prevention and treatment of obesity-associated hypertension.


Asunto(s)
Hipertensión , Serotonina , Humanos , Norepinefrina/farmacología , Hipertensión/etiología , Obesidad/complicaciones , Isoformas de Proteínas
8.
Front Cell Dev Biol ; 10: 953374, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36046341

RESUMEN

Adipose tissue is one of the tissues in the human body that is renewed during the whole life. Dysregulation of this process leads to conditions such as obesity, metabolic syndrome, and type 2 diabetes. The key role in maintaining the healthy state of adipose tissue is played by a specific group of postnatal stem cells called multipotent mesenchymal stromal cells (MSCs). They are both precursors for new adipocytes and key paracrine regulators of adipose tissue homeostasis. The activity of MSCs is tightly adjusted to the needs of the organism. To ensure such coordination, MSCs are put under strict regulation which is realized through a wide variety of signaling mechanisms. They control aspects of MSC activity such as proliferation, differentiation, and production of signal molecules via alteration of MSC sensitivity to hormonal stimuli. In this regard, MSCs use all the main mechanisms of hormonal sensitivity regulation observed in differentiated cells, but at the same time, several unique regulatory mechanisms have been found in MSCs. In the presented review, we will cover these unique mechanisms as well as specifics of common mechanisms of regulation of hormonal sensitivity in stem cells.

9.
Biochim Biophys Acta Mol Cell Res ; 1869(1): 119157, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34619163

RESUMEN

Endothelial cells (ECs) degrade the extracellular matrix of vessel walls and contact surrounding cells to facilitate migration during angiogenesis, leading to formation of an EC-tubular network (ETN). Mesenchymal stromal cells (MSC) support ETN formation when co-cultured with ECs, but the mechanism is incompletely understood. We examined the role of the urokinase-type plasminogen activator (uPA) system, i.e. the serine protease uPA, its inhibitor PAI-1, receptor uPAR/CD87, clearance by the low-density lipoprotein receptor-related protein (LRP1) and their molecular partners, in the formation of ETNs supported by adipose tissue-derived MSC. Co-culture of human umbilical vein ECs (HUVEC) with MSC increased mRNA expression levels of uPAR, MMP14, VEGFR2, TGFß1, integrin ß3 and Notch pathway components (Notch1 receptor and ligands: Dll1, Dll4, Jag1) in HUVECs and uPA, uPAR, TGFß1, integrin ß3, Jag1, Notch3 receptor in MSC. Inhibition at several steps in the activation process indicates that uPA, uPAR and LRP1 cross-talk with αv-integrins, VEGFR2 and Notch receptors/ligands to mediate ETN formation in HUVEC-MSC co-culture. The urokinase system mediates ETN formation through the coordinated action of uPAR, uPA's catalytic activity, its binding to uPAR and its nuclear translocation. These studies identify potential targets to help control aberrant angiogenesis with minimal impact on healthy vasculature.


Asunto(s)
Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Madre Mesenquimatosas/metabolismo , Neovascularización Fisiológica , Transducción de Señal , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo , Antígenos CD18/metabolismo , Células Cultivadas , Fibronectinas/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Humanos , Metaloproteinasa 14 de la Matriz/metabolismo , Receptores Notch/metabolismo , Receptores del Activador de Plasminógeno Tipo Uroquinasa/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
10.
FEBS J ; 287(6): 1076-1087, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31899581

RESUMEN

Obesity is often associated with high systemic and local renin-angiotensin system (RAS) activity in adipose tissue. Adipose-derived mesenchymal stem/stromal cells (ADSCs), responsible for adipose tissue growth upon high-fat diet, express multiple angiotensin II receptor isoforms, including angiotensin II type 1 receptor (AT1 R), angiotensin II type 2 receptor (AT2 R), Mas and Mas-related G protein-coupled receptor D. Although AT1 R is expressed on most ADSCs, other angiotensin receptors are co-expressed on a small subpopulation of the cells, a phenomenon that results in a complex response pattern. Following AT1 R activation, the effects are transient due to rapid receptor internalisation. This short-lived effect can be prevented by heteromerisation with AT2 R, a particularly important strategy for the regulation of ADSC differentiation and secretory activity. Heteromeric AT2 R might be especially important for the generation of thermogenic beige adipocytes. This review summarises current data regarding the regulation of adipose tissue renewal and particularly ADSC adipogenic differentiation and secretory activity by RAS, with an emphasis on AT2 R and its effects. We reveal a new scheme that implicates AT2 R into the regulation of ADSC hormonal sensitivity.


Asunto(s)
Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Animales , Proliferación Celular , Humanos
11.
Cell Metab ; 31(3): 642-653.e6, 2020 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-32130885

RESUMEN

Hydrogen peroxide (H2O2) is a key redox intermediate generated within cells. Existing probes for H2O2 have not solved the problem of detection of the ultra-low concentrations of the oxidant: these reporters are not sensitive enough, or pH-dependent, or insufficiently bright, or not functional in mammalian cells, or have poor dynamic range. Here we present HyPer7, the first bright, pH-stable, ultrafast, and ultrasensitive ratiometric H2O2 probe. HyPer7 is fully functional in mammalian cells and in other higher eukaryotes. The probe consists of a circularly permuted GFP integrated into the ultrasensitive OxyR domain from Neisseria meningitidis. Using HyPer7, we were able to uncover the details of H2O2 diffusion from the mitochondrial matrix, to find a functional output of H2O2 gradients in polarized cells, and to prove the existence of H2O2 gradients in wounded tissue in vivo. Overall, HyPer7 is a probe of choice for real-time H2O2 imaging in various biological contexts.


Asunto(s)
Movimiento Celular , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Oxidantes/metabolismo , Animales , Transporte Biológico , Extensiones de la Superficie Celular/metabolismo , Complejo I de Transporte de Electrón/metabolismo , Células HeLa , Humanos , Imagenología Tridimensional , Larva/metabolismo , Membranas Mitocondriales/metabolismo , Pez Cebra
12.
Biol Open ; 8(7)2019 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-31285266

RESUMEN

Proteins can aggregate in response to stresses, including hyperosmotic shock. Formation and disassembly of aggregates is a relatively slow process. We describe a novel instant response of the cell to hyperosmosis, during which chaperones and other proteins form numerous foci with properties uncharacteristic of classical aggregates. These foci appeared/disappeared seconds after shock onset/removal, in close correlation with cell volume changes. Genome-wide and targeted testing revealed chaperones, metabolic enzymes, P-body components and amyloidogenic proteins in the foci. Most of these proteins can form large assemblies and for some, the assembled state was pre-requisite for participation in foci. A genome-wide screen failed to identify genes whose absence prevented foci participation by Hsp70. Shapes of and interconnections between foci, revealed by super-resolution microscopy, indicated that the foci were compressed between other entities. Based on our findings, we suggest a new model of cytosol architecture as a collection of numerous gel-like regions suspended in a liquid network. This network is reduced in volume in response to hyperosmosis and forms small pockets between the gel-like regions.

13.
Tissue Eng Part C Methods ; 25(3): 168-175, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30747044

RESUMEN

IMPACT STATEMENT: Cell lines represent convenient models to elucidate specific causes of multigenetic and pluricausal diseases, to test breakthrough regenerative technologies. Most commonly used cell lines surpass diploid cells in their accessibility for delivery of large DNA molecules and genome editing, but the main obstacles for obtaining cell models with knockout-targeted protein from aneuploid cells are multiple allele copies and karyotype/phenotype heterogeneity. In the study, we report an original approach to CRISPR-/Cas9-mediated genome modification of aneuploid cell cultures to create functional cell models, achieving highly efficient targeted protein knockout and avoiding "clonal effect" (for the first time to our knowledge).


Asunto(s)
Aneuploidia , Sistemas CRISPR-Cas , Edición Génica , Técnicas de Inactivación de Genes/normas , Genes/genética , Animales , Células HeLa , Células Hep G2 , Humanos , Ratones , Células 3T3 NIH
15.
FEBS J ; 285(24): 4590-4601, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30375744

RESUMEN

The dependence of tumors on glycolysis for ATP generation offers a rationale for therapeutic strategies aimed at selective inhibition of the glycolytic pathway. Analysis of tumor cell responses to anticancer drugs revealed that inhibition of glycolysis by 2-deoxy-D-glucose (2-DG) generally augmented the apoptotic response; however, in HCT116 human colon carcinoma cells, apoptosis was suppressed. A comparison of neuroblastoma SK-N-BE(2) and HCT116 cells revealed, that in contrast to HCT116, in SK-N-BE(2) cells 2-DG alone was able to induce cell death. In SK-N-BE(2) cells the decrease in ATP levels upon treatment with 2-DG was more prominent because in HCT116 cells mitochondria compensated for the loss of ATP caused by glycolysis suppression. In both cells lines 2-DG triggered endoplasmic reticulum (ER) stress, assessed by the accumulation of the marker protein GRP78/BiP. Suppression of ER stress by mannose attenuated the 2-DG-induced apoptotic response in SK-N-BE(2) cells, implying that apoptosis in these cells is a consequence of ER stress induction. In HCT116 cells, ER stress stimulated autophagy, assessed by the accumulation of the lipidated form of LC3. The inhibitor of ER stress mannose attenuated autophagy and reversed 2-DG-mediated suppression of cisplatin-induced apoptosis. When autophagy in HCT116 cells was suppressed by bafilomycin, cisplatin-induced apoptosis was decreased. At the same time, stimulation of autophagy in SK-N-BE(2) cells suppressed cell death. Thus, successful treatment of tumors with conventionally used anticancer drugs should be combined with targeting metabolic pathways involved in the regulation of apoptosis, autophagy, and cellular bioenergetics.


Asunto(s)
Apoptosis , Autofagia , Linaje de la Célula , Cisplatino/farmacología , Neoplasias del Colon/patología , Desoxiglucosa/farmacología , Neuroblastoma/patología , Antimetabolitos/farmacología , Antineoplásicos/farmacología , Proliferación Celular , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Humanos , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Mitocondrias/patología , Neuroblastoma/tratamiento farmacológico , Neuroblastoma/metabolismo , Células Tumorales Cultivadas
16.
Sci Data ; 5: 180196, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30277480

RESUMEN

Mesenchymal stem/stromal cells (MSCs) were identified in most tissues of an adult organism. MSCs mediate physiological renewal, as well as regulation of tissue homeostasis, reparation and regeneration. Functions of MSCs are regulated by endocrine and neuronal signals, and noradrenaline is one of the most important MSC regulators. We provided flow cytometry analysis of expression of adrenergic receptors on the surface of human MSCs isolated from ten different donors. We have found that the expression profile of adrenergic receptors in MSCs vary significantly between donors. We also showed that alpha1A-adrenoceptor expression is upregulated under the action of noradrenaline. We share our flow cytometry raw data, as well as processing of these data on a flow cytometry repository for freely downloading.


Asunto(s)
Células Madre Mesenquimatosas/metabolismo , Receptores Adrenérgicos/biosíntesis , Adulto , Citometría de Flujo , Humanos , Persona de Mediana Edad
17.
Data Brief ; 16: 327-333, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29234689

RESUMEN

This article contains results of analyses of angiotensin II receptors expression in human adipose tissue and stem/stromal cells isolated from adipose tissue. We also provide here data regarding the effect of angiotensin II on intracellular calcium mobilization in adipose tissue derived stem/stromal cells (ADSCs). Discussion of the data can be found in (Sysoeva et al., 2017) [1].

18.
Sci Rep ; 7(1): 14571, 2017 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-29109414

RESUMEN

Evading cell death is a major driving force for tumor progression that is one of the main problems in current cancer research. Mitotic catastrophe (MC) represents attractive platform compromising tumor resistance to current therapeutic modalities. MC appeared as onco-suppressive mechanism and is defined as a stage driving the cell to an irreversible destiny, i.e. cell death via apoptosis or necrosis. Our study highlights that MC induction in colorectal carcinoma cell lines ultimately leads to the autophagy followed by apoptosis. We show that autophagy suppression in Atg 13 knockout non-small cell lung carcinoma cells lead to the dramatic decrease of MC rate. Furthermore, mitochondria-linked anti-apoptotic proteins Mcl-1 and Bcl-xL play a crucial role in the duration of MC and a cross-talk between autophagy and apoptosis. Thus, the suppression of apoptosis by overexpression of Mcl-1 or Bcl-xL affected MC and lead to a significant induction of autophagy in HCT116 wt and HCT116 14-3-3σ-/- cells. Our data demonstrate that MC induction is a critical stage, in which a cell decides how to die, while mitochondria are responsible for the maintaining the balance between MC - autophagy - apoptosis.


Asunto(s)
Autofagia/fisiología , Mitosis , Apoptosis , Carcinoma de Pulmón de Células no Pequeñas/fisiopatología , Muerte Celular/fisiología , Línea Celular Tumoral , Neoplasias Colorrectales/fisiopatología , Células HCT116 , Humanos , Neoplasias Pulmonares/fisiopatología , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteína bcl-X/metabolismo
19.
Stem Cell Res ; 25: 115-122, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-29127873

RESUMEN

Obesity is often associated with high systemic and local activity of renin-angiotensin system (RAS). Mesenchymal stem cells of adipose tissue are the main source of adipocytes. The aim of this study was to clarify how local RAS could control adipose differentiation of human adipose tissue derived mesenchymal stem cells (ADSCs). We examined the distribution of angiotensin receptor expressing cells in human adipose tissue and found that type 1 and type 2 receptors are co-expressed in its stromal compartment, which is known to contain mesenchymal stem cells. To study the expression of receptors specifically in ADSCs we have isolated them from adipose tissue. Up to 99% of cultured ADSCs expressed angiotensin II (AngII) receptor type 1 (AT1). Using the analysis of Ca2+ mobilization in single cells we found that only 5.2±2.7% of ADSCs specifically respond to serial Ang II applications via AT1 receptor and expressed this receptor constantly. This AT1const ADSCs subpopulation exhibited increased adipose competency, which was triggered by endogenous AngII. Inhibitory and expression analyses showed that AT1const ADSCs highly co-express AngII type 2 receptor (AT2), which was responsible for increased adipose competency of this ADSC subpopulation.


Asunto(s)
Angiotensina II/metabolismo , Células Madre Mesenquimatosas/citología , Receptor de Angiotensina Tipo 2/metabolismo , Adipogénesis/genética , Adipogénesis/fisiología , Tejido Adiposo/citología , Diferenciación Celular/fisiología , Humanos , Receptor de Angiotensina Tipo 2/genética
20.
Sci Rep ; 6: 32835, 2016 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-27596381

RESUMEN

Sympathetic neurons are important components of mesenchymal stem cells (MSCs) niche and noradrenaline regulates biological activities of these cells. Here we examined the mechanisms of regulation of MSCs responsiveness to noradrenaline. Using flow cytometry, we demonstrated that α1A adrenergic receptors isoform was the most abundant in adipose tissue-derived MSCs. Using calcium imaging in single cells, we demonstrated that only 6.9 ± 0.8% of MSCs responded to noradrenaline by intracellular calcium release. Noradrenaline increases MSCs sensitivity to catecholamines in a transitory mode. Within 6 hrs after incubation with noradrenaline the proportion of cells responding by Ca(2+) release to the fresh noradrenaline addition has doubled but declined to the baseline after 24 hrs. Increased sensitivity was due to the elevated quantities of α1A-adrenergic receptors on MSCs. Such elevation depended on the stimulation of ß-adrenergic receptors and adenylate cyclase activation. The data for the first time clarify mechanisms of regulation of MSCs sensitivity to noradrenaline.


Asunto(s)
Adenilil Ciclasas/metabolismo , Tejido Adiposo/metabolismo , Calcio/metabolismo , Células Madre Mesenquimatosas/metabolismo , Norepinefrina/farmacología , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta/metabolismo , Adenilil Ciclasas/genética , Tejido Adiposo/citología , Agonistas alfa-Adrenérgicos/farmacología , Células Cultivadas , Humanos , Células Madre Mesenquimatosas/citología , Persona de Mediana Edad , Receptores Adrenérgicos alfa 1/genética , Receptores Adrenérgicos beta/genética , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda