Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Arch Pharm (Weinheim) ; : e2400450, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004853

RESUMEN

Epigenetic modulators such as lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) are drug targets for cancer, neuropsychiatric disease, or inflammation, but inhibitors of these enzymes exhibit considerable side effects. For a potential local treatment with reduced systemic toxicity, we present here soft drug candidates as new LSD1 and HDAC inhibitors. A soft drug is a compound that is degraded in vivo to less active metabolites after having achieved its therapeutic function. This has been successfully applied for corticosteroids in the clinic, but soft drugs targeting epigenetic enzymes are scarce, with the HDAC inhibitor remetinostat being the only example. We have developed new methyl ester-containing inhibitors targeting LSD1 or HDACs and compared the biological activities of these to their respective carboxylic acid cleavage products. In vitro activity assays, cellular experiments, and a stability assay identified potent HDAC and LSD1 soft drug candidates that are superior to their corresponding carboxylic acids in cellular models.

2.
J Med Chem ; 67(12): 10076-10095, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38847803

RESUMEN

The NAD+-dependent lysine deacylase sirtuin 2 (Sirt2) is involved in multiple pathological conditions such as cancer. Targeting Sirt2 has thus received an increased interest for therapeutic purposes. Furthermore, the orthologue from Schistosoma mansoni (SmSirt2) has been considered for the potential treatment of the neglected tropical disease schistosomiasis. We previously identified a 1,2,4-oxadiazole-based scaffold from the screening of the "Kinetobox" library as a dual inhibitor of human Sirt2 (hSirt2) and SmSirt2. Herein, we describe the structure-activity studies on 1,2,4-oxadiazole-based analogues, which are potent inhibitors of human Sirt2 deacetylation. As proposed by docking studies, a substrate-competitive and cofactor-noncompetitive binding mode of inhibition could be determined in vitro via binding assays and kinetic analysis and further confirmed by a crystal structure of an oxadiazole inhibitor in complex with hSirt2. Optimized analogues reduced cell viability and inhibited prostate cancer cell migration, in correlation with Sirt2 deacetylase inhibition both in vitro and in cells.


Asunto(s)
Oxadiazoles , Sirtuina 2 , Sirtuina 2/antagonistas & inhibidores , Sirtuina 2/metabolismo , Oxadiazoles/farmacología , Oxadiazoles/química , Oxadiazoles/síntesis química , Humanos , Relación Estructura-Actividad , Simulación del Acoplamiento Molecular , Animales , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Schistosoma mansoni/efectos de los fármacos , Schistosoma mansoni/enzimología , Movimiento Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda