Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Mol Syst Biol ; 9: 709, 2013 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-24281055

RESUMEN

One of the key ways in which microbes are thought to regulate their metabolism is by modulating the availability of enzymes through transcriptional regulation. However, the limited success of efforts to manipulate metabolic fluxes by rewiring the transcriptional network has cast doubt on the idea that transcript abundance controls metabolic fluxes. In this study, we investigate control of metabolic flux in the model bacterium Bacillus subtilis by quantifying fluxes, transcripts, and metabolites in eight metabolic states enforced by different environmental conditions. We find that most enzymes whose flux switches between on and off states, such as those involved in substrate uptake, exhibit large corresponding transcriptional changes. However, for the majority of enzymes in central metabolism, enzyme concentrations were insufficient to explain the observed fluxes--only for a number of reactions in the tricarboxylic acid cycle were enzyme changes approximately proportional to flux changes. Surprisingly, substrate changes revealed by metabolomics were also insufficient to explain observed fluxes, leaving a large role for allosteric regulation and enzyme modification in the control of metabolic fluxes.


Asunto(s)
Bacillus subtilis/enzimología , Bacillus subtilis/genética , Regulación Bacteriana de la Expresión Génica , Redes y Vías Metabólicas , ARN Mensajero/genética , Isótopos de Carbono , Cinética , ARN Mensajero/metabolismo , Transcripción Genética
2.
PLoS Biol ; 9(1): e1000582, 2011 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-21267068

RESUMEN

Ascertaining when and where genes are expressed is of crucial importance to understanding or predicting the physiological role of genes and proteins and how they interact to form the complex networks that underlie organ development and function. It is, therefore, crucial to determine on a genome-wide level, the spatio-temporal gene expression profiles at cellular resolution. This information is provided by colorimetric RNA in situ hybridization that can elucidate expression of genes in their native context and does so at cellular resolution. We generated what is to our knowledge the first genome-wide transcriptome atlas by RNA in situ hybridization of an entire mammalian organism, the developing mouse at embryonic day 14.5. This digital transcriptome atlas, the Eurexpress atlas (http://www.eurexpress.org), consists of a searchable database of annotated images that can be interactively viewed. We generated anatomy-based expression profiles for over 18,000 coding genes and over 400 microRNAs. We identified 1,002 tissue-specific genes that are a source of novel tissue-specific markers for 37 different anatomical structures. The quality and the resolution of the data revealed novel molecular domains for several developing structures, such as the telencephalon, a novel organization for the hypothalamus, and insight on the Wnt network involved in renal epithelial differentiation during kidney development. The digital transcriptome atlas is a powerful resource to determine co-expression of genes, to identify cell populations and lineages, and to identify functional associations between genes relevant to development and disease.


Asunto(s)
Bases de Datos Genéticas , Perfilación de la Expresión Génica , Ratones/anatomía & histología , Ratones/genética , Animales , Atlas como Asunto , Embrión de Mamíferos , Internet , Ratones/embriología , Ratones Endogámicos C57BL , Especificidad de Órganos
3.
PLoS Genet ; 6(8): e1001069, 2010 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-20808891

RESUMEN

The Helicobacter pylori cag pathogenicity island (cagPAI) encodes a type IV secretion system. Humans infected with cagPAI-carrying H. pylori are at increased risk for sequelae such as gastric cancer. Housekeeping genes in H. pylori show considerable genetic diversity; but the diversity of virulence factors such as the cagPAI, which transports the bacterial oncogene CagA into host cells, has not been systematically investigated. Here we compared the complete cagPAI sequences for 38 representative isolates from all known H. pylori biogeographic populations. Their gene content and gene order were highly conserved. The phylogeny of most cagPAI genes was similar to that of housekeeping genes, indicating that the cagPAI was probably acquired only once by H. pylori, and its genetic diversity reflects the isolation by distance that has shaped this bacterial species since modern humans migrated out of Africa. Most isolates induced IL-8 release in gastric epithelial cells, indicating that the function of the Cag secretion system has been conserved despite some genetic rearrangements. More than one third of cagPAI genes, in particular those encoding cell-surface exposed proteins, showed signatures of diversifying (Darwinian) selection at more than 5% of codons. Several unknown gene products predicted to be under Darwinian selection are also likely to be secreted proteins (e.g. HP0522, HP0535). One of these, HP0535, is predicted to code for either a new secreted candidate effector protein or a protein which interacts with CagA because it contains two genetic lineages, similar to cagA. Our study provides a resource that can guide future research on the biological roles and host interactions of cagPAI proteins, including several whose function is still unknown.


Asunto(s)
Variación Genética , Islas Genómicas , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Genoma Bacteriano , Helicobacter pylori/clasificación , Helicobacter pylori/aislamiento & purificación , Helicobacter pylori/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
4.
BMC Genomics ; 12: 584, 2011 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-22122991

RESUMEN

BACKGROUND: Campylobacter jejuni and Campylobacter coli are human intestinal pathogens of global importance. Zoonotic transmission from livestock animals or animal-derived food is the likely cause for most of these infections. However, little is known about their general and host-specific mechanisms of colonization, or virulence and pathogenicity factors. In certain hosts, Campylobacter species colonize persistently and do not cause disease, while they cause acute intestinal disease in humans. RESULTS: Here, we investigate putative host-specificity using phenotypic characterization and genome-wide analysis of genetically closely related C. jejuni strains from different sources. A collection of 473 fresh Campylobacter isolates from Germany was assembled between 2006 and 2010 and characterized using MLST. A subset of closely related C. jejuni strains of the highly prevalent sequence type ST-21 was selected from different hosts and isolation sources. PCR typing of strain-variable genes provided evidence that some genes differed between these strains. Furthermore, phenotypic variation of these strains was tested using the following criteria: metabolic variation, protein expression patterns, and eukaryotic cell interaction. The results demonstrated remarkable phenotypic diversity within the ST-21 group, which however did not correlate with isolation source. Whole genome sequencing was performed for five ST-21 strains from chicken, human, bovine, and food sources, in order to gain insight into ST-21 genome diversity. The comparisons showed extensive genomic diversity, primarily due to recombination and gain of phage-related genes. By contrast, no genomic features associated with isolation source or host were identified. CONCLUSIONS: The genome information and phenotypic data obtained in vitro and in a chicken infection model provided little evidence of fixed adaptation to a specific host. Instead, the dominant C. jejuni ST-21 appeared to be characterized by phenotypic flexibility and high genetic microdiversity, revealing properties of a generalist. High genetic flexibility might allow generalist variants of C. jejuni to reversibly express diverse fitness factors in changing environments.


Asunto(s)
Campylobacter jejuni/aislamiento & purificación , Animales , Campylobacter jejuni/clasificación , Campylobacter jejuni/fisiología , Microbiología de Alimentos , Humanos , Filogenia , Especificidad de la Especie
5.
Science ; 335(6072): 1099-103, 2012 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-22383848

RESUMEN

Adaptation of cells to environmental changes requires dynamic interactions between metabolic and regulatory networks, but studies typically address only one or a few layers of regulation. For nutritional shifts between two preferred carbon sources of Bacillus subtilis, we combined statistical and model-based data analyses of dynamic transcript, protein, and metabolite abundances and promoter activities. Adaptation to malate was rapid and primarily controlled posttranscriptionally compared with the slow, mainly transcriptionally controlled adaptation to glucose that entailed nearly half of the known transcription regulation network. Interactions across multiple levels of regulation were involved in adaptive changes that could also be achieved by controlling single genes. Our analysis suggests that global trade-offs and evolutionary constraints provide incentives to favor complex control programs.


Asunto(s)
Adaptación Fisiológica , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Redes Reguladoras de Genes , Glucosa/metabolismo , Malatos/metabolismo , Redes y Vías Metabólicas/genética , Algoritmos , Proteínas Bacterianas/metabolismo , Simulación por Computador , Interpretación Estadística de Datos , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Metaboloma , Metabolómica , Modelos Biológicos , Operón , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda