Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Small ; 19(16): e2205827, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36670268

RESUMEN

The Hagen-Poiseuille equation for gas flow had never been derived theoretically; it is rather a simple analogy of the same for liquid flow, and "gas viscosity" is a measure for overall resistance to flow. In this work, experimental flow data for different gases through capillaries and porous media, reported in literature by different groups, including those measured and treated by Knudsen are treated with Hagen-Poiseuille equation, but taking "gas viscosity" as an adjustable parameter. It is found that, at constant temperature, there exists an unambiguous relation between the viscosity (µ) of a given gas, and the product of average pressure (Pav ) and capillary diameter (D). In addition, for Pav * D < 0.01, a universal linear relation exists between µ/M0.5 (where M is molecular mass) for different gases and the parameter Pav * D. The new interpretation of gas viscosity avoids the differentiation of regimes into "Knudsen" and "viscous" flow as it is frequently done in literature. The concept can be applied to obtain a reliable data base for gas viscosities in different fields of applications, for example in microfluidic systems or the analysis of pore size distributions of filters and membranes by gas flow porometry.

2.
Environ Sci Technol ; 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36630187

RESUMEN

Antibacterial modification is a chemical-free method to mitigate biofouling, but surface accumulation of bacteria shields antibacterial groups and presents a significant challenge in persistently preventing membrane biofouling. Herein, a great synergistic effect of electrorepulsion and quaternary ammonium (QA) inactivation on maintaining antibacterial activity against biofouling has been investigated using an electrically conductive QA membrane (eQAM), which was fabricated by polymerization of pyrrole with QA compounds. The electrokinetic force between negatively charged Escherichia coli and cathodic eQAM prevented E. coli cells from reaching the membrane surface. More importantly, cathodic eQAM accelerated the detachment of cells from the eQAM surface, particularly for dead cells whose adhesion capacity was impaired by inactivation. The number of dead cells on the eQAM surface was declined by 81.2% while the number of live cells only decreased by 49.9%. Characterization of bacteria accumulation onto the membrane surface using an electrochemical quartz crystal microbalance revealed that the electrorepulsion accounted for the cell detachment rather than inactivation. In addition, QA inactivation mainly contributed to minimizing the cell adhesion capacity. Consequently, the membrane fouling was significantly declined, and the final normalized water flux was promoted higher than 20% with the synergistic effect of electrorepulsion and QA inactivation. This work provides a unique long-lasting strategy to mitigate membrane biofouling.

3.
Environ Sci Technol ; 57(8): 3013-3020, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36786864

RESUMEN

Membrane science and technology is growing rapidly worldwide and continues to play an increasingly important role in diverse fields by offering high separation efficiency with low energy consumption. Membranes have also shown great promise for "green" separation. A majority of the investigations in the field are devoted to the membrane fabrication and modification with the ultimate goals of enhancing the properties and separation performance of membranes. However, less attention has been paid to membrane life cycle management, particularly at the end of service. This is becoming very important, especially taking into account the trends toward sustainable development and carbon neutrality. On the contrary, this can be a great opportunity considering the large variety of membrane processes, especially in terms of the size and capacity of plants in operation. This work aims to highlight the prominent aspects that govern membrane life cycle management with special attention to life cycle assessment (LCA). While fabrication, application, and recycling are the three key aspects of LCA, we focus here on membrane (module) recycling at the end of life by elucidating the relevant aspects, potential criteria, and strategies that effectively contribute to the achievement of green development and sustainability goals.


Asunto(s)
Reciclaje , Tecnología , Animales , Estadios del Ciclo de Vida
4.
Soft Matter ; 17(26): 6445-6460, 2021 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-34132722

RESUMEN

Artificial model colloids are of special interest in the development of advanced sterile filters, as they are able to efficiently separate pleomorphic, highly deformable and infectious bacteria such as mycoplasma, which, until now, has been considered rather challenging and laborious. This study presents a full range of different soft to super soft synthetic polymeric microgels, including two types with similar hydrodynamic mean diameter, i.e., 180 nm, and zeta potential, i.e., -25 ± 10 mV, but different deformability, synthesized by inverse miniemulsion terpolymerization of acrylamide, sodium acrylate and N,N'-methylenebisacrylamide. These microgels were characterized by means of dynamic, electrophoretic and static light scattering techniques. In addition, the deformability of the colloids was investigated by filter cake compressibility studies during ultrafiltration in dead-end mode, analogously to a study of real mycoplasma, i.e., Acholeplasma laidlawii, to allow for a direct comparison. The results indicate that the variation of the synthesis parameters, i.e., crosslinker content, polymeric solid content and content of sodium acrylate, has a significant impact on the swelling behavior of the microgels in aqueous solution as well as on their deformability under filtration conditions. A higher density of chemical crosslinking points results in less swollen and more rigid microgels. Furthermore, these parameters determine electrokinetic properties of the more or less permeable colloids. Overall, it is shown that these soft synthetic microgels can be obtained with tailor-made properties, covering the size of smallest species of and otherwise similar to real mycoplasma. This is a relevant first step towards the future use of synthetic microgels as mimics for mycoplasma.


Asunto(s)
Microgeles , Mycoplasma , Coloides , Polímeros , Ultrafiltración
5.
Environ Sci Technol ; 55(8): 5442-5452, 2021 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-33710872

RESUMEN

Cake layer formation is the dominant ultrafiltration membrane fouling mechanism after long-term operation. However, precisely analyzing the cake-layer structure still remains a challenge due to its thinness (micro/nano scale). Herein, based on the excellent depth-resolution and foulant-discrimination of time-of-flight secondary ion mass spectrometry, a three-dimensional analysis of the cake-layer structure caused by natural organic matter was achieved at lower nanoscale for the first time. When humic substances or polysaccharides coexisted with proteins separately, a homogeneous cake layer was formed due to their interactions. Consequently, membrane fouling resistances induced by proteins were reduced by humic substances or polysaccharides, leading to a high flux. However, when humic substances and polysaccharides coexisted, a sandwich-like cake layer was formed owing to the asynchronous deposition based on molecular dynamics simulations. As a result, membrane fouling resistances were superimposed, and the flux was low. Furthermore, it is interesting that cake-layer structures were relatively stable under common UF operating conditions (i.e., concentration and stirring). These findings better elucidate membrane fouling mechanisms of different natural-organic-matter mixtures. Moreover, it is demonstrated that membrane fouling seems lower with a more homogeneous cake layer, and humic substances or polysaccharides play a critical role. Therefore, regulating the cake-layer structure by feed pretreatment scientifically based on proven mechanisms should be an efficient membrane-fouling-control strategy.


Asunto(s)
Ultrafiltración , Purificación del Agua , Sustancias Húmicas , Membranas Artificiales
6.
J Environ Manage ; 276: 111299, 2020 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-32882520

RESUMEN

This work investigates the performance and structure of polyamide thin film nanocomposite (PA-TFN) membrane incorporated with triethylenetetramine-modified graphene oxide (GO-TETA). The embedment of GO-TETA nanosheets within the structure of PA-TFN membrane was evaluated at different concentrations (0.005, 0.01, 0.03 wt%; in aqueous piperazine (PIP)) through interfacial polymerization (IP). The physicochemical properties of the prepared membrane were investigated by SEM, AFM, water contact angle, and zeta potential as well as ATR-IR spectroscopy. The presence of longer chains of amino groups (in comparison with the directly linked amino ones) among the stacked GO nanosheets was assumed to increase interlayer spacing, resulting in remarkable changes in water permeance and separation behavior of modified polyamide (PA) membrane. It is seen that GO-TETA nanosheets were uniformly distributed in the matrix of PA layer. With increasing the concentration of GO-TETA, the flux of TFN membranes under 6 bar was increased from 49.8 l/m2 h (no additive) to 73.2 l/m2 h (TFN comprising 0.03 wt% GO-TETA. In addition, more loading GO-TETA resulted in a significant decrease in the average thickness of the polyamide layer from ~380 to ~150 nm. Furthermore, addition of GO-TETA improved the hydrophilicity of nanocomposite membranes, resulting in superb water flux recovery (antifouling indicator) as high as 95% after filtration of bovine serum albumin solution. Also, the retention capability of the TFN membranes towards some textile dyes increased as high as 99.6%.


Asunto(s)
Grafito , Purificación del Agua , Nylons , Trientina
7.
Bioconjug Chem ; 30(8): 2238-2246, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31310713

RESUMEN

Solid-gas biocatalysis was performed in a specially designed continuous biocatalytic membrane reactor (BMR). In this work, lipase from Candida rugosa (LCR) and ethyl acetate in vapor phase were selected as model enzyme and substrate, respectively, to produce acetic acid and ethanol. LCR was immobilized on functionalized PVDF membranes by using two different kinds of chemical bond: electrostatic and covalent. Electrostatic immobilization of LCR was carried out using a membrane functionalized with amino groups, while covalent immobilization was carried out using membrane, with or without surface-immobilized polyacrylamide (PAAm) microgels, functionalized with aldehyde groups. These biocatalytic membranes were tested in a solid-gas BMR and compared in terms of enzyme specific activity, catalytic activity, and volumetric reaction rate. Results indicated that lipase covalently immobilized is more effective only when the immobilization is mediated by microgels, showing catalytic activity doubled with respect to the other system with covalently bound enzyme (4.4 vs 2.2 µmol h-1). Enzyme immobilized by ionic bond, despite a lower catalytic activity (3.5 vs 4.4 µmol h-1), showed the same specific activity (1.5 mmol·h-1·g-1ENZ) of the system using microgels, due to a higher enzyme degree of freedom coupled with an analogously improved enzyme hydration. Using the optimized operating conditions regarding immobilized enzyme amount, ethyl acetate, and molar water flow rate, all three BMRs showed continuous catalytic activity for about 5 months. On the contrary, the free enzyme (in water/ethyl acetate emulsion) at 50 °C was completely inactive and at 30 °C (temperature optimum) has a specific activity 2 orders of magnitude lower (8.4 × 10-2 mmol h-1 g-1) than the solid-gas biocatalytic membrane reactor. To the best of our knowledge, this is the first example of solid-gas biocatalysis, working in the gaseous phase in which a biocatalytic membrane reactor, with the enzyme/substrate system lipase/ethyl acetate, was used.


Asunto(s)
Biocatálisis , Reactores Biológicos , Enzimas Inmovilizadas/química , Lipasa/química , Acetatos/metabolismo , Estabilidad de Enzimas , Hidrólisis , Cinética , Lipasa/metabolismo , Membranas Artificiales , Microgeles
8.
Langmuir ; 35(5): 1284-1293, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-29983069

RESUMEN

A simple scalable strategy is proposed to fabricate highly permeable antifouling nanofiltration membranes. Membranes with a selective thin polyamide layer were prepared via interfacial polymerization incorporating building blocks of zwitterionic copolymers. The zwitterionic copolymer, poly(aminopropyldimethylaminoethyl methacrylate)- co-poly(sulfobetaine methacrylate) with an average molecular weight of 6.1 kg mol-1, was synthesized in three steps: (i) polymerization of dimethylaminoethyl methacrylate to yield the base polymer by atom transfer radical polymerization (ATRP), (ii) fractional sulfobetainization via quaternization, and (iii) amination via quaternization. The effect of the zwitterionic polymer content on the polyamide surface characteristics, fouling resistance, and permeance is demonstrated. The zwitterion-modified membrane becomes more hydrophilic with lower surface roughness, as the zwitterionic polymer fraction increases. The excellent fouling resistance of the zwitterion-modified membrane was confirmed by the negligible protein adsorption and low bacteria fouling compared to a pristine membrane without zwitterionic segments. In addition, the zwitterion-modified membranes achieve a water permeation around 135 L m-2 h-1bar-1, which is 27-fold higher than that of the pristine membrane, along with good selectivity in the nanofiltration range, confirmed by the rejection of organic dyes. This permeance is about 10 times higher than that of other reported loose nanofiltration membranes with comparable dye rejection. The newly designed membrane is promising as a highly permeable fouling resistant cross-linked polyamide network for various water treatment applications.

9.
Langmuir ; 32(5): 1347-59, 2016 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-26766428

RESUMEN

The formation of bacterial biofilms on indwelling medical devices generally causes high risks for adverse complications such as catheter-associated urinary tract infections. In this work, a strategy for synthesizing innovative coatings of poly(dimethylsiloxane) (PDMS) catheter material, using layer-by-layer assembly with three novel functional polymeric building blocks, is reported, i.e., an antifouling copolymer with zwitterionic and quaternary ammonium side groups, a contact biocidal derivative of that polymer with octyl groups, and the antibacterial hydrogen peroxide (H2O2) producing enzyme cellobiose dehydrogenase (CDH). CDH oxidizes oligosaccharides by transferring electrons to oxygen, resulting in the production of H2O2. The design and synthesis of random copolymers which combine segments that have antifouling properties by zwitterionic groups and can be used for electrostatically driven layer-by-layer (LbL) assembly at the same time were based on the atom-transfer radical polymerization of dimethylaminoethyl methacrylate and subsequent partial sulfobetainization with 1,3-propane sultone followed by quaternization with methyl iodide only or octyl bromide and thereafter methyl iodide. The alternating multilayer systems were formed by consecutive adsorption of the novel polycations with up to 50% zwitterionic groups and of poly(styrenesulfonate) as the polyanion. Due to its negative charge, enzyme CDH was also firmly embedded as a polyanionic layer in the multilayer system. This LbL coating procedure was first performed on prefunctionalized silicon wafers and studied in detail with ellipsometry as well as contact angle (CA) and zetapotential (ZP) measurements before it was transferred to prefunctionalized PDMS and analyzed by CA and ZP measurements as well as atomic force microscopy. The coatings comprising six layers were stable and yielded a more neutral and hydrophilic surface than did PDMS, the polycation with 50% zwitterionic groups having the largest effect. Enzyme activity was found to be dependent on the depth of embedment in the multilayer coating. Depending on the used polymeric building block, up to a 60% reduction in the amount of adhering bacteria and clear evidence for killed bacteria due to the antimicrobial functionality of the coating could be confirmed. Overall, this work demonstrates the feasibility of an easy to perform and shape-independent method for preparing an antifouling and antimicrobial coating for the significant reduction of biofilm formation and thus reducing the risk of acquiring infections by using urinary catheters.


Asunto(s)
Antibacterianos/química , Biopelículas/efectos de los fármacos , Dimetilpolisiloxanos/química , Metacrilatos/química , Nylons/química , Poliestirenos/química , Antibacterianos/síntesis química , Antibacterianos/farmacología , Adhesión Bacteriana , Deshidrogenasas de Carbohidratos/química , Deshidrogenasas de Carbohidratos/metabolismo , Dimetilpolisiloxanos/síntesis química , Dimetilpolisiloxanos/farmacología , Técnicas Electroquímicas , Liofilización , Peróxido de Hidrógeno/metabolismo , Metacrilatos/síntesis química , Metacrilatos/farmacología , Nylons/síntesis química , Nylons/farmacología , Espectroscopía de Fotoelectrones , Poliestirenos/síntesis química , Poliestirenos/farmacología , Compuestos de Amonio Cuaternario/síntesis química , Compuestos de Amonio Cuaternario/química , Compuestos de Amonio Cuaternario/farmacología , Silicio , Azida Sódica , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/fisiología , Catéteres Urinarios/microbiología
10.
Environ Sci Technol ; 50(23): 12912-12920, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27806572

RESUMEN

Many well-established methods for studying the degradation of brominated flame retardants are not useful when working with polymeric and water insoluble species. An example for this specific class of flame retardants is PolyFR (polymeric flame retardant; CAS No 1195978-93-8), which is used as a substituent for hexabromocyclododecane. Although it has been on the market for two years now, almost no information is available about its long time behavior in the environment. Within this study, we focus on how to determine a possible degradation of both pure PolyFR as well as PolyFR in the final insulation product, expanded polystyrene foam. Therefore, we chose UV radiation followed by analyses of the total bromine content at different time points via ICP-MS and identified possible degradation products such as 2,4,6-tribromophenol through LC-MS. These results were then linked with measurements of the adsorbable organically bound bromine and total organic carbon in order to estimate their concentrations. With respect to the obtained 1H NMR, GPC, and contact angle results, the possibility for further degradation was discussed, as UV irradiation can influence the decomposition of molecules in combination with other environmental factors like biodegradation.


Asunto(s)
Retardadores de Llama , Hidrocarburos Bromados , Bromo , Polímeros , Poliestirenos , Rayos Ultravioleta
11.
Macromol Rapid Commun ; 37(24): 2030-2036, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27778416

RESUMEN

Nonspecific adsorption of proteins is a challenging problem for the development of biocompatible materials, as well as for antifouling and fouling-release coatings, for instance for the marine industry. The concept of preparing amphiphilic systems based on low surface energy hydrophobic materials via their hydrophilic modification is being widely pursued. This work describes a novel two-step route for the preparation of interpenetrating polymer networks of otherwise incompatible poly(dimethylsiloxane) and zwitterionic polymers. Changes in surface hydrophilicity as well as surface charge at different pH values are investigated. Characterization using atomic force microscopy provides thorough insight into surface changes upon hydrophilic modification. Protein fouling of the materials is assessed using fibrinogen as a model protein.


Asunto(s)
Dimetilpolisiloxanos/química , Dimetilpolisiloxanos/síntesis química , Membranas Artificiales , Interacciones Hidrofóbicas e Hidrofílicas
12.
Nature ; 519(7541): 41-2, 2015 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-25739626
13.
Langmuir ; 31(49): 13426-32, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26569145

RESUMEN

The temperature-dependent switching behavior of poly(N,N-dimethylaminoethyl methacrylate) brushes in alkaline, neutral, and acidic solutions is examined. A novel microscopic laser temperature-jump technique is employed in order to study characteristic thermodynamic and kinetic parameters. Static laser micromanipulation experiments allow one to determine the temperature-dependent variation of the swelling ratio. The data reveal a strong shift of the volume phase transition of the polymer brushes to higher temperatures when going from pH = 10 to pH = 4. Dynamic laser micromanipulation experiments offer a temporal resolution on a submillisecond time scale and provide a means to determine the intrinsic rate constants. Both the swelling and the deswelling rates strongly decrease in acidic solutions. Complementary experiments using in situ atomic force microscopy show an increased polymer layer thickness at these conditions. The data are discussed on the basis of pH-dependent structural changes of the polymer brushes including protonation of the amine groups and conformational rearrangements. Generally, repulsive electrostatic interactions and steric effects are assumed to hamper and slow down temperature-induced switching in acidic solutions. This imposes significant restrictions for smart polymer surfaces, sensors, and devices requiring fast response times.

14.
Sensors (Basel) ; 15(3): 4870-89, 2015 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-25730487

RESUMEN

Piezoelectric quartz crystals and analogous gold substrates were electrochemically coated with molecularly imprinted polypyrrole films for pulsed amperometric detection (PAD) of clofibric acid, a metabolite of clofibrate. Cyclic voltammetry data obtained during polymerization and deposited weight estimations revealed a decrease of the polymerization rate with increasing clofibric acid concentration. XPS measurements indicated that clofibric acid could be removed after imprinting with an aqueous ethanol solution, which was further optimized by using PAD. Zeta potential and contact angle measurements revealed differences between molecularly imprinted (MIP) and non-imprinted polymer (NIP) layers. Binding experiments with clofibric acid and other substances showed a pronounced selectivity of the MIP for clofibric acid vs. carbamazepine, but the response of MIP and NIP to 2,4-dichlorophenoxyacetic acid was higher than that for clofibric acid. A smooth surface, revealed by AFM measurements, with roughness of 6-8 nm for imprinted and non-imprinted layers, might be a reason for an excessively low density of specific binding sites for clofibric acid. Furthermore, the decreased polymerization rate in the presence of clofibric acid might not result in well-defined polymer structures, which could be the reason for the lower sensitivity.

15.
ACS Appl Mater Interfaces ; 16(14): 17517-17530, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38536956

RESUMEN

We developed a novel method to fabricate copper nanorods in situ in a poly(ether sulfone) (15 wt %) casting solution by a sonochemical reduction of Cu2+ ions with NaBH4. The main twist is the addition of ethanol to remove excess NaBH4 through Cu(0) catalyzed ethanolysis. This enabled the direct use of the resulting copper-containing casting dispersions for membrane preparation by liquid nonsolvent-induced phase separation and led to full utilization of the copper source, generating zero metal waste. We characterized the copper nanorods as presented in the membranes via scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and UV/vis spectroscopy. We could demonstrate that the rapid immobilization from reducing conditions led to the membrane incorporation of copper nanorods in a state of high reactivity, which also promoted the complete oxidation to CuO after fabrication. We further observed a large aspect ratio and crystal straining of the nanorods, likely resulting from growth around the matrix polymer. The entanglement with poly(ether sulfone) further facilitated a selective presentation at the pore surface of the final CuO-decorated membranes. The membranes also exhibit high water permeances of up to 2800 L/m2hbar. Our catalytic membranes achieved exceptionally high activities in the aqueous flow-through reduction of p-nitrophenol (p-NP), with turnover frequencies of up to 115 h-1, even surpassing those of other state-of-the-art catalytic membranes that incorporate Pd or Ag. Additionally, we demonstrated that catalytic hydrolysis of the reducing agent in water can lead to hydrogen gas formation and blocking of active sites during continuous catalytic p-NP hydrogenation. We illustrated that the accompanying conversion loss can be mitigated by facilitated gas transport in the water-filled pores, which is dependent on the orientation of the pore size gradient and the flow direction.

16.
Water Res ; 249: 120939, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043347

RESUMEN

Membrane distillation (MD) has promising potential in the water purification and wastewater treatment industries; however, fouling and wetting are the main obstacles to its commercialization, and higher fluxes and energy efficiencies are essential. Magneto-responsive membranes (MagMem) with integrated magnetic nanoparticles (MNPs) enable in situ fouling mitigation and switchable separation by nano-mixing or nano-heating, triggered by external magnetic fields, in a range of membrane processes, but not yet been demonstrated in MD. This perspective discussed the potential paths of MagMem utilization in MD based on the research status and dilemmas of MD. It can be envisioned that MagMem will lead to a paradigm shift in MD, especially by in situ fouling/wetting mitigation and enhancing energy efficiency via in-place actuation and localized heating by MNPs. Moreover, remotely controllable pore tuning and specific or switchable wettability can also be anticipated. Overall, MagMem provides attractive opportunities for advanced robust and efficient MD.


Asunto(s)
Nanopartículas , Purificación del Agua , Humectabilidad , Destilación , Membranas Artificiales
17.
Environ Sci Ecotechnol ; 19: 100344, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38192688

RESUMEN

Rapid advancement in aerospace technology has successfully enabled long-term life and economic activities in space, particularly in Low Earth Orbit (LEO), extending up to 2000 km from the mean sea level. However, the sustainance of the LEO Economy and its Environmental Control and Life Support System (ECLSS) still relies on a regular cargo supply of essential commodities (e.g., water, food) from Earth, for which there still is a lack of adequate and sustainable technologies. One key challenge in this context is developing water treatment technologies and standards that can perform effectively under microgravity conditions. Solving this technical challenge will be a milestone in providing a scientific basis and the necessary support mechanisms for establishing permanent bases in outer space and beyond. To identify clues towards solving this challenge, we looked back at relevant scientific research exploring novel technologies and standards for deep space exploration, also considering feedback for enhancing these technologies on land. Synthesizing our findings, we share our outlook for the future of drinking water treatment in microgravity. We also bring up a new concept for space aquatic chemistry, considering the closed environment of engineered systems operating in microgravity.

18.
Sci Total Environ ; 931: 172549, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38643881

RESUMEN

The excitation by magnetic field was established to mitigate the membrane fouling of magnetic biochar (MB)-supplemented membrane bioreactor (MBR) in this study. The results showed that the transmembrane pressure (TMP) increase rates decreased by about 8 % after introducing the magnetic field compared with the magnetic biochar-MBR (MB-MBR). Membrane characterization suggested that the flocs in the magnetic field-magnetic biochar-MBR (MF-MB-MBR) formed a highly permeable developed cake layer, and a fluffier and more porous deposited layer on membrane surface, which minimized fouling clogging of the membrane pores. Further mechanistic investigation revealed that the decrease in contact angle of fouled membrane surface in MF-MB-MBR, i.e. an enhanced membrane hydrophilicity, is considered important for forming highly permeable layers. Additionally, the magnetic field was demonstrated to have a positive effect on the improvement of the magneto-biological effect, the enhancement of charge neutralization and adsorption bridging between sludge and magnetic biochar, and the reduction of formation of extracellular polymeric substances (EPSs), which all yielded sludge flocs with a large pore structure conducive to form a fluffy and porous deposited layer in the membrane surface. Furthermore, high-throughput sequencing analysis revealed that the magnetic field also led to a reduction in microbial diversity, and that it promoted the enrichment of specific functional microbial communities (e.g. Bacteroidetes and Firmicutes) playing an important role in mitigating membrane fouling. Taken together, this study of magnetic field-enhanced magnetic biochar for MBR membrane fouling mitigation provides insights important new ideas for more effective and sustainable operation strategies.


Asunto(s)
Incrustaciones Biológicas , Reactores Biológicos , Carbón Orgánico , Campos Magnéticos , Membranas Artificiales , Microbiota , Reactores Biológicos/microbiología , Carbón Orgánico/química , Incrustaciones Biológicas/prevención & control , Eliminación de Residuos Líquidos/métodos
19.
Water Res ; 258: 121671, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38749186

RESUMEN

Oriented towards the pressing needs for hypersaline wastewater desalination and zero liquid discharge (ZLD), the contrasting mixed scaling of thermal-driven vacuum membrane distillation (VMD) and pressure-driven nanofiltration (NF) were investigated in this work. Bulk crystallization was the main mechanism in VMD due to the high salinity and temperature, but the time-independent resistance by the adsorption of silicate and organic matter dominated the initial scaling process. Surface crystallization and the consequent pore-blocking were the main scaling mechanisms in NF, with the high permeate drag force, hydraulic pressure, and cross-flow rate resulting in the dense scaling layer mainly composed of magnesium-silica hydrate (MSH). Silicate enhanced NF scaling with a 75% higher initial flux decline rate attributed to the MSH formation and compression, but delayed bulk crystallization in VMD. Organic matter presented an anti-scaling effect by delaying bulk crystallization in both VMD and NF, but specifically promoted CaCO3 scaling in NF. Furthermore, the incipient scaling was intensified as silicate and organic matter coexisted. The scaling mechanism shifted from surface to bulk crystallization due to the membrane concentration in both VMD and NF. This work fills the research gaps on mixed scaling mechanisms in different membrane processes, which offers insights for scaling mitigation and thereby supports the application of ZLD.


Asunto(s)
Destilación , Filtración , Membranas Artificiales , Destilación/métodos , Purificación del Agua/métodos , Salinidad , Aguas Residuales/química
20.
Water Res ; 250: 121023, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113598

RESUMEN

Nanofiltration (NF) will play a crucial role in salt fractionation and recovery, but the complicated and severe mixed scaling is not yet fully understood. In this work, the mixed scaling patterns and mechanisms of high-pressure NF in zero-liquid discharge (ZLD) scenarios were investigated by disclosing the role of key foulants. The bulk crystallization of CaSO4 and Mg-Si complexes and the resultant pore blocking and cake formation under high pressure were the main scaling mechanisms in hypersaline desalination. The incipient scalants were Mg-Si hydrates, CaF2, CaCO3, and CaMg(CO3)2. Si deposited by adsorption and polymerization prior to and impeded Ca scaling when Mg was not added, thus pore blocking was the main mechanism. The amorphous Mg-Si hydrates contribute to dense cake formation under high hydraulic pressure and permeate drag force, causing rapid flux decline as Mg was added. Humic acid has a high affinity to Ca2+by complexation, which enhances incipient scaling by adsorption or lowers the energy barrier of nucleation but improves the interconnectivity of the foulants layer and inhibits bulk crystallization due to the chelation and directional adsorption. Bovine serum albumin promotes cake formation due to the low electrostatic repulsion and acts as a cement to particles by adsorption and bridging in bulk. This work fills the research gaps in mixed scaling of NF, which is believed to support the application of ZLD and shed light on scaling in hypersaline/ultra-hypersaline wastewater desalination applications.


Asunto(s)
Aguas Residuales , Purificación del Agua , Membranas Artificiales , Cloruro de Sodio , Sustancias Húmicas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda