Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Mol Ecol ; 33(3): e17230, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38078558

RESUMEN

Urbanization is a persistent and widespread driver of global environmental change, potentially shaping evolutionary processes due to genetic drift and reduced gene flow in cities induced by habitat fragmentation and small population sizes. We tested this prediction for the eastern grey squirrel (Sciurus carolinensis), a common and conspicuous forest-dwelling rodent, by obtaining 44K SNPs using reduced representation sequencing (ddRAD) for 403 individuals sampled across the species' native range in eastern North America. We observed moderate levels of genetic diversity, low levels of inbreeding, and only a modest signal of isolation-by-distance. Clustering and migration analyses show that estimated levels of migration and genetic connectivity were higher than expected across cities and forested areas, specifically within the eastern portion of the species' range dominated by urbanization, and genetic connectivity was less than expected within the western range where the landscape is fragmented by agriculture. Landscape genetic methods revealed greater gene flow among individual squirrels in forested regions, which likely provide abundant food and shelter for squirrels. Although gene flow appears to be higher in areas with more tree cover, only slight discontinuities in gene flow suggest eastern grey squirrels have maintained connected populations across urban areas in all but the most heavily fragmented agricultural landscapes. Our results suggest urbanization shapes biological evolution in wildlife species depending strongly on the composition and habitability of the landscape matrix surrounding urban areas.


Asunto(s)
Animales Salvajes , Metagenómica , Animales , Humanos , Población Urbana , Ecosistema , Sciuridae/genética
2.
Proc Natl Acad Sci U S A ; 117(44): 27456-27464, 2020 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-33051302

RESUMEN

The virus causing COVID-19 has spread rapidly worldwide and threatens millions of lives. It remains unknown, as of April 2020, whether summer weather will reduce its spread, thereby alleviating strains on hospitals and providing time for vaccine development. Early insights from laboratory studies and research on related viruses predicted that COVID-19 would decline with higher temperatures, humidity, and ultraviolet (UV) light. Using current, fine-scaled weather data and global reports of infections, we develop a model that explains 36% of the variation in maximum COVID-19 growth rates based on weather and demography (17%) and country-specific effects (19%). UV light is most strongly associated with lower COVID-19 growth. Projections suggest that, without intervention, COVID-19 will decrease temporarily during summer, rebound by autumn, and peak next winter. Validation based on data from May and June 2020 confirms the generality of the climate signal detected. However, uncertainty remains high, and the probability of weekly doubling rates remains >20% throughout summer in the absence of social interventions. Consequently, aggressive interventions will likely be needed despite seasonal trends.


Asunto(s)
Infecciones por Coronavirus/epidemiología , Neumonía Viral/epidemiología , Estaciones del Año , Incertidumbre , Betacoronavirus , COVID-19 , Calor , Humanos , Humedad , Modelos Estadísticos , Pandemias , SARS-CoV-2 , Rayos Ultravioleta
3.
Proc Natl Acad Sci U S A ; 117(30): 17482-17490, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32641501

RESUMEN

Historically, many biologists assumed that evolution and ecology acted independently because evolution occurred over distances too great to influence most ecological patterns. Today, evidence indicates that evolution can operate over a range of spatial scales, including fine spatial scales. Thus, evolutionary divergence across space might frequently interact with the mechanisms that also determine spatial ecological patterns. Here, we synthesize insights from 500 eco-evolutionary studies and develop a predictive framework that seeks to understand whether and when evolution amplifies, dampens, or creates ecological patterns. We demonstrate that local adaptation can alter everything from spatial variation in population abundances to ecosystem properties. We uncover 14 mechanisms that can mediate the outcome of evolution on spatial ecological patterns. Sometimes, evolution amplifies environmental variation, especially when selection enhances resource uptake or patch selection. The local evolution of foundation or keystone species can create ecological patterns where none existed originally. However, most often, we find that evolution dampens existing environmental gradients, because local adaptation evens out fitness across environments and thus counteracts the variation in associated ecological patterns. Consequently, evolution generally smooths out the underlying heterogeneity in nature, making the world appear less ragged than it would be in the absence of evolution. We end by highlighting the future research needed to inform a fully integrated and predictive biology that accounts for eco-evolutionary interactions in both space and time.


Asunto(s)
Evolución Biológica , Ecosistema , Medio Ambiente Extraterrestre , Biodiversidad , Biomasa , Nutrientes , Dinámica Poblacional
4.
Glob Chang Biol ; 28(10): 3222-3235, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35226784

RESUMEN

A major challenge in climate change biology is to explain why the impacts of climate change vary around the globe. Microclimates could explain some of this variation, but climate change biologists often overlook microclimates because they are difficult to map. Here, we map microclimates in a freshwater rock pool ecosystem and evaluate how accounting for microclimates alters predictions of climate change impacts on aquatic invertebrates. We demonstrate that average maximum temperature during the growing season can differ by 9.9-11.6°C among microclimates less than a meter apart and this microclimate variation might increase by 21% in the future if deeper pools warm less than shallower pools. Accounting for this microclimate variation significantly alters predictions of climate change impacts on aquatic invertebrates. Predictions that exclude microclimates predict low future occupancy (0.08-0.32) and persistence probabilities (2%-73%) for cold-adapted taxa, and therefore predict decreases in gamma richness and a substantial shift toward warm-adapted taxa in local communities (i.e., thermophilization). However, predictions incorporating microclimates suggest cool locations will remain suitable for cold-adapted taxa in the future, no change in gamma richness, and 825% less thermophilization. Our models also suggest that cool locations will become suitable for warm-adapted taxa and will therefore accumulate biodiversity in the future, which makes cool locations essential for biodiversity conservation. Simulated protection of the 10 coolest microclimates (9% of locations on the landscape) results in a 100% chance of conserving all focal taxa in the future. In contrast, protecting the 10 currently most biodiverse locations, a commonly employed conservation strategy, results in a 3% chance of conserving all focal taxa in the future. Our study suggests that we must account for microclimates if we hope to understand the future impacts of climate change and design effective conservation strategies to limit biodiversity loss.


Asunto(s)
Cambio Climático , Ecosistema , Animales , Biodiversidad , Invertebrados , Microclima
5.
Proc Natl Acad Sci U S A ; 116(7): 2612-2617, 2019 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-30651307

RESUMEN

Biodiversity in natural systems can be maintained either because niche differentiation among competitors facilitates stable coexistence or because equal fitness among neutral species allows for their long-term cooccurrence despite a slow drift toward extinction. Whereas the relative importance of these two ecological mechanisms has been well-studied in the absence of evolution, the role of local adaptive evolution in maintaining biological diversity through these processes is less clear. Here we study the contribution of local adaptive evolution to coexistence in a landscape of interconnected patches subject to disturbance. Under these conditions, early colonists to empty patches may adapt to local conditions sufficiently fast to prevent successful colonization by other preadapted species. Over the long term, the iteration of these local-scale priority effects results in niche convergence of species at the regional scale even though species tend to monopolize local patches. Thus, the dynamics evolve from stable coexistence through niche differentiation to neutral cooccurrence at the landscape level while still maintaining strong local niche segregation. Our results show that neutrality can emerge at the regional scale from local, niche-based adaptive evolution, potentially resolving why ecologists often observe neutral distribution patterns at the landscape level despite strong niche divergence among local communities.


Asunto(s)
Adaptación Fisiológica , Evolución Biológica , Ecosistema , Biodiversidad , Modelos Teóricos
6.
Proc Biol Sci ; 288(1945): 20203133, 2021 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-33593186

RESUMEN

A growing body of theory predicts that evolution of an early-arriving species in a new environment can produce a competitive advantage against later arriving species, therefore altering community assembly (i.e. the community monopolization hypothesis). Applications of the community monopolization hypothesis are increasing. However, experimental tests of the hypothesis are rare. Here, we provide a rare experimental demonstration of the community monopolization hypothesis using two archaeal species. We first expose one species to low- and high-temperature environments for 135 days. Populations in the high-temperature treatment evolved a 20% higher median performance when grown at high temperature. We then demonstrate that early arrival and adaptation reduce the abundance of a late-arriving species in the high-temperature environment by 63% relative to when both species arrive simultaneously and neither species is adapted to high temperature. These results are consistent with the community monopolization hypothesis and suggest that adaptation can reduce competitive dominance to alter community assembly. Hence, community monopolization might be much more common in nature than previously assumed. Our results strongly support the idea that patterns of biodiversity might often stem from a race between local adaptation and colonization of pre-adapted species.


Asunto(s)
Biodiversidad , Evolución Biológica , Aclimatación , Adaptación Fisiológica , Ecosistema
7.
Biol Lett ; 17(4): 20200901, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33849348

RESUMEN

Understanding how genetic variation is maintained in a metapopulation is a longstanding problem in evolutionary biology. Historical resurveys of polymorphisms have offered efficient insights about evolutionary mechanisms, but are often conducted on single, large populations, neglecting the more comprehensive view afforded by considering all populations in a metapopulation. Here, we resurveyed a metapopulation of spotted salamanders (Ambystoma maculatum) to understand the evolutionary drivers of frequency variation in an egg mass colour polymorphism. We found that this metapopulation was demographically, phenotypically and environmentally stable over the last three decades. However, further analysis revealed evidence for two modes of evolution in this metapopulation-genetic drift and balancing selection. Although we cannot identify the balancing mechanism from these data, our findings present a clear view of contemporary evolution in colour morph frequency and demonstrate the importance of metapopulation-scale studies for capturing a broad range of evolutionary dynamics.


Asunto(s)
Ambystoma , Urodelos , Animales , Flujo Genético , Polimorfismo Genético , Dinámica Poblacional , Selección Genética , Urodelos/genética
8.
Proc Biol Sci ; 287(1938): 20201665, 2020 11 11.
Artículo en Inglés | MEDLINE | ID: mdl-33171095

RESUMEN

A predator's functional response determines predator-prey interactions by describing the relationship between the number of prey available and the number eaten. Its shape and parameters fundamentally govern the dynamic equilibrium of predator-prey interactions and their joint abundances. Yet, estimates of these key parameters generally assume stasis in space and time and ignore the potential for local adaptation to alter feeding responses and the stability of trophic dynamics. Here, we evaluate if functional responses diverge among populations of spotted salamander (Ambystoma maculatum) larvae that face antagonistic selection on feeding strategies based on their own risk of predation. Common garden experiments revealed that spotted salamander from ponds with varying predation risks differed in their functional responses, suggesting an evolutionary response. Applying mechanistic equations, we discovered that the combined changes in attack rates, handling times and shape of the functional response enhanced feeding rate in environments with high densities of gape-limited predators. We suggest how these parameter changes could alter community equilibria and other emergent properties of food webs. Community ecologists might often need to consider how local evolution at fine scales alters key relationships in ways that alter local diversity patterns, food web dynamics, resource gradients and community responses to disturbance.


Asunto(s)
Urodelos/fisiología , Ambystoma , Animales , Biota , Cadena Alimentaria , Larva , Estanques , Conducta Predatoria/fisiología
9.
Oecologia ; 192(4): 909-918, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32162072

RESUMEN

Phenotypic plasticity can be an important adaptive response to climate change, particularly for dispersal-limited species. Temperature frequently alters developmental and phenotypic traits including morphology, behavior, and reproductive cycles. We often lack crucial information about if and how thermal conditions during development will interact with genetic responses and facilitate persistence or adaptation under climate change. Polymorphic species offer an ideal test for this, as alternative morphs often confer differential adaptive advantages. However, few studies have examined the effects of incubation temperature on color expression or development in polymorphic taxa. Here we test if developmental temperature mediates morph frequency in the polymorphic salamander Plethodon cinereus. Although previous research suggests geographic variation in morph proportions results from differential climate adaptation, it remains unknown if plasticity also contributes to this variation. We used a split-clutch common garden experiment to determine the effects of developmental temperature on the color and development of P. cinereus. Our results indicate developmental temperature affects coloration in P. cinereus, either via plasticity or differential mortality, with eggs incubated at warmer temperatures yielding a higher proportion of unstriped individuals than those from cooler temperatures. This temperature response may contribute to the spatial variation in morph frequencies in natural populations. Surprisingly, we found neither temperature nor egg size affected hatchling size. Our study provides important insights into the potential for climate-induced responses to preserve diversity in dispersal-limited species, like P. cinereus, and enable time for adaptive evolution.


Asunto(s)
Bosques , Urodelos , Animales , Color , Fenotipo , Temperatura
10.
Am Nat ; 194(4): 590-612, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31490731

RESUMEN

Dispersal of prey from predator-free patches frequently supplies a trophic subsidy to predators by providing more prey than are produced locally. Prey arriving from predator-free patches might also have evolved weaker defenses against predators and thus enhance trophic subsidies by providing easily captured prey. Using local models assuming a linear or accelerating trade-off between defense and population growth rate, we demonstrate that immigration of undefended prey increased predator abundances and decreased defended prey through eco-evolutionary apparent competition. In individual-based models with spatial structure, explicit genetics, and gene flow along an environmental gradient, prey became maladapted to predators at the predator's range edge, and greater gene flow enhanced this maladaptation. The predator gained a subsidy from these easily captured prey, which enhanced its abundance, facilitated its persistence in marginal habitats, extended its range extent, and enhanced range shifts during environmental changes, such as climate change. Once the predator expanded, prey adapted to it and the advantage disappeared, resulting in an elastic predator range margin driven by eco-evolutionary dynamics. Overall, the results indicate a need to consider gene flow-induced maladaptation and species interactions as mutual forces that frequently determine ecological and evolutionary dynamics and patterns in nature.


Asunto(s)
Adaptación Biológica , Distribución Animal , Conducta Predatoria , Animales , Evolución Biológica , Cambio Climático , Simulación por Computador , Flujo Génico , Dinámica Poblacional
11.
Glob Chang Biol ; 24(1): 439-454, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28833972

RESUMEN

Species' distributions will respond to climate change based on the relationship between local demographic processes and climate and how this relationship varies based on range position. A rarely tested demographic prediction is that populations at the extremes of a species' climate envelope (e.g., populations in areas with the highest mean annual temperature) will be most sensitive to local shifts in climate (i.e., warming). We tested this prediction using a dynamic species distribution model linking demographic rates to variation in temperature and precipitation for wood frogs (Lithobates sylvaticus) in North America. Using long-term monitoring data from 746 populations in 27 study areas, we determined how climatic variation affected population growth rates and how these relationships varied with respect to long-term climate. Some models supported the predicted pattern, with negative effects of extreme summer temperatures in hotter areas and positive effects on recruitment for summer water availability in drier areas. We also found evidence of interacting temperature and precipitation influencing population size, such as extreme heat having less of a negative effect in wetter areas. Other results were contrary to predictions, such as positive effects of summer water availability in wetter parts of the range and positive responses to winter warming especially in milder areas. In general, we found wood frogs were more sensitive to changes in temperature or temperature interacting with precipitation than to changes in precipitation alone. Our results suggest that sensitivity to changes in climate cannot be predicted simply by knowing locations within the species' climate envelope. Many climate processes did not affect population growth rates in the predicted direction based on range position. Processes such as species-interactions, local adaptation, and interactions with the physical landscape likely affect the responses we observed. Our work highlights the need to measure demographic responses to changing climate.


Asunto(s)
Cambio Climático , Ranidae/fisiología , Aclimatación , Distribución Animal , Animales , América del Norte , Estaciones del Año , Temperatura
12.
Oecologia ; 186(1): 291-302, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29098419

RESUMEN

Exurban areas are expanding throughout the world, yet their effects on local biodiversity remain poorly understood. Wetlands, in particular, face ongoing and substantial threats from exurban development. We predicted that exurbanization would reduce the diversity of wetland amphibian and invertebrate communities and that more spatially aggregated residential development would leave more undisturbed natural land, thereby promoting greater local diversity. Using structural equation models, we tested a series of predictions about the direct and indirect pathways by which exurbanization extent, spatial pattern, and wetland characteristics might affect diversity patterns in 38 wetlands recorded during a growing season. We used redundancy, indicator species, and nested community analyses to evaluate how exurbanization affected species composition. In contrast to expectations, we found higher diversity in exurban wetlands. We also found that housing aggregation did not significantly affect diversity. Exurbanization affected biodiversity indirectly by increasing roads and development, which promoted permanent wetlands with less canopy cover and more aquatic vegetation. These pond characteristics supported greater diversity. However, exurbanization was associated with fewer temporary wetlands and fewer of the species that depend on these habitats. Moreover, the best indicator species for an exurban wetland was the ram's head snail, a common disease vector in disturbed ponds. Overall, results suggest that exurbanization is homogenizing wetlands into more permanent water bodies. These more permanent, exurban ponds support higher overall animal diversity, but exclude temporary wetland specialists. Conserving the full assemblage of wetland species in expanding exurban regions throughout the world will require protecting and creating temporary wetlands.


Asunto(s)
Biodiversidad , Humedales , Anfibios , Animales , Ecosistema , Masculino , Estanques , Ovinos
13.
Glob Chang Biol ; 23(1): 12-24, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27550861

RESUMEN

Accurately predicting biological impacts of climate change is necessary to guide policy. However, the resolution of climate data could be affecting the accuracy of climate change impact assessments. Here, we review the spatial and temporal resolution of climate data used in impact assessments and demonstrate that these resolutions are often too coarse relative to biologically relevant scales. We then develop a framework that partitions climate into three important components: trend, variance, and autocorrelation. We apply this framework to map different global climate regimes and identify where coarse climate data is most and least likely to reduce the accuracy of impact assessments. We show that impact assessments for many large mammals and birds use climate data with a spatial resolution similar to the biologically relevant area encompassing population dynamics. Conversely, impact assessments for many small mammals, herpetofauna, and plants use climate data with a spatial resolution that is orders of magnitude larger than the area encompassing population dynamics. Most impact assessments also use climate data with a coarse temporal resolution. We suggest that climate data with a coarse spatial resolution is likely to reduce the accuracy of impact assessments the most in climates with high spatial trend and variance (e.g., much of western North and South America) and the least in climates with low spatial trend and variance (e.g., the Great Plains of the USA). Climate data with a coarse temporal resolution is likely to reduce the accuracy of impact assessments the most in the northern half of the northern hemisphere where temporal climatic variance is high. Our framework provides one way to identify where improving the resolution of climate data will have the largest impact on the accuracy of biological predictions under climate change.


Asunto(s)
Aves , Cambio Climático , Animales , Clima , Predicción , Dinámica Poblacional , América del Sur
14.
Ecology ; 97(9): 2212-2222, 2016 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-27859062

RESUMEN

Recent studies have supported a link between phylogenetic diversity and various ecological properties including ecosystem function. However, such studies typically assume that phylogenetic branches of equivalent length are more or less interchangeable. Here we suggest that there is a need to consider not only branch lengths but also their placement on the phylogeny. We demonstrate how two common indices of network centrality can be used to describe the evolutionary distinctiveness of network elements (nodes and branches) on a phylogeny. If phylogenetic diversity enhances ecosystem function via complementarity and the representation of functional diversity, we would predict a correlation between evolutionary distinctiveness of network elements and their contribution to ecosystem process. In contrast, if one or a few evolutionary innovations play key roles in ecosystem function, the relationship between evolutionary distinctiveness and functional contribution may be weak or absent. We illustrate how network elements associated with high functional contribution can be identified from regressions between phylogenetic diversity and productivity using a well-known empirical data set on plant productivity from the Cedar Creek Long-Term Ecological Research. We find no association between evolutionary distinctiveness and ecosystem functioning, but we are able to identify phylogenetic elements associated with species of known high functional contribution within the Fabaceae. Our perspective provides a useful guide in the search for ecological traits linking diversity and ecosystem function, and suggests a more nuanced consideration of phylogenetic diversity is required in the conservation and biodiversity-ecosystem-function literature.


Asunto(s)
Biodiversidad , Ecosistema , Filogenia , Evolución Biológica , Ecología
15.
Proc Natl Acad Sci U S A ; 115(47): 11871-11873, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397152
16.
Am Nat ; 186(1): E16-32, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26098352

RESUMEN

Multiple theories predict the evolution of foraging rates in response to environmental variation in predation risk, intraspecific competition, time constraints, and temperature. We tested six hypotheses for the evolution of foraging rate in 24 spotted salamander (Ambystoma maculatum) populations from three latitudinally divergent sites using structural equation models derived from theory and applied to our system. We raised salamander larvae in a common-garden experiment and then assayed foraging rate under controlled conditions. Gape-limited predation risk from marbled salamanders solely explained foraging rate variation among populations at the southern site, which was dominated by this form of selection. However, at the middle and northern sites, populations evolved different foraging rates depending on their unique responses to local intraspecific density. The coupling of gape-limited predation risk from marbled salamanders and high intraspecific density at the middle site jointly contributed to selection for rapid foraging rate. At the northernmost site, intraspecific density alone explained 97% of the interpopulation variation in foraging rate. These results suggest that foraging rate has evolved multiple times in response to varying contributions from predation risk and intraspecific competition. Predation risk often varies along environmental gradients, and, thus, organisms might often shift evolutionary responses from minimizing predation risk to maximizing intraspecific competitive performance.


Asunto(s)
Ambystoma/fisiología , Animales , Conducta Apetitiva , Evolución Biológica , Ecosistema , Conducta Alimentaria , Geografía , Larva/fisiología , Conducta Predatoria
17.
Proc Biol Sci ; 282(1803): 20142879, 2015 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-25673685

RESUMEN

Dispersal has long been recognized as a mechanism that shapes many observed ecological and evolutionary processes. Thus, understanding the factors that promote its evolution remains a major goal in evolutionary ecology. Landscape connectivity may mediate the trade-off between the forces in favour of dispersal propensity (e.g. kin-competition, local extinction probability) and those against it (e.g. energetic or survival costs of dispersal). It remains, however, an open question how differing degrees of landscape connectivity may select for different dispersal strategies. We implemented an individual-based model to study the evolution of dispersal on landscapes that differed in the variance of connectivity across patches ranging from networks with all patches equally connected to highly heterogeneous networks. The parthenogenetic individuals dispersed based on a flexible logistic function of local abundance. Our results suggest, all else being equal, that landscapes differing in their connectivity patterns will select for different dispersal strategies and that these strategies confer a long-term fitness advantage to individuals at the regional scale. The strength of the selection will, however, vary across network types, being stronger on heterogeneous landscapes compared with the ones where all patches have equal connectivity. Our findings highlight how landscape connectivity can determine the evolution of dispersal strategies, which in turn affects how we think about important ecological dynamics such as metapopulation persistence and range expansion.


Asunto(s)
Distribución Animal , Evolución Biológica , Ecosistema , Animales , Aptitud Genética , Longevidad , Modelos Biológicos , Partenogénesis , Dinámica Poblacional
18.
Evol Lett ; 8(1): 43-55, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370540

RESUMEN

Rapid evolutionary adaptation could reduce the negative impacts of climate change if sufficient heritability of key traits exists under future climate conditions. Plastic responses to climate change could also reduce negative impacts. Understanding which populations are likely to respond via evolution or plasticity could therefore improve estimates of extinction risk. A large body of research suggests that the evolutionary and plastic potential of a population can be predicted by the degree of spatial and temporal climatic variation it experiences. However, we know little about the scale at which these relationships apply. Here, we test if spatial and temporal variation in temperature affects genetic variation and plasticity of fitness and a key thermal tolerance trait (critical thermal maximum; CTmax) at microgeographic scales using a metapopulation of Daphnia magna in freshwater rock pools. Specifically, we ask if (a) there is a microgeographic adaptation of CTmax and fitness to differences in temperature among the pools, (b) pools with greater temporal temperature variation have more genetic variation or plasticity in CTmax or fitness, and (c) increases in temperature affect the heritability of CTmax and fitness. Although we observed genetic variation and plasticity in CTmax and fitness, and differences in fitness among pools, we did not find support for the predicted relationships between temperature variation and genetic variation or plasticity. Furthermore, the genetic variation and plasticity we observed in CTmax are unlikely sufficient to reduce the impacts of climate change. CTmax plasticity was minimal and heritability was 72% lower when D. magna developed at the higher temperatures predicted under climate change. In contrast, the heritability of fitness increased by 53% under warmer temperatures, suggesting an increase in overall evolutionary potential unrelated to CTmax under climate change. More research is needed to understand the evolutionary and plastic potential under climate change and how that potential will be altered in future climates.

19.
Philos Trans R Soc Lond B Biol Sci ; 379(1907): 20230129, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-38913063

RESUMEN

Biologists have long sought to predict the distribution of species across landscapes to understand biodiversity patterns and dynamics. These efforts usually integrate ecological niche and dispersal dynamics, but evolution can also mediate these ecological dynamics. Species that disperse well and arrive early might adapt to local conditions, which creates an evolution-mediated priority effect that alters biodiversity patterns. Yet, dispersal is also a trait that can evolve and affect evolution-mediated priority effects. We developed an individual-based model where populations of competing species can adapt not only to local environments but also to different dispersal probabilities. We found that lower regional species diversity selects for populations with higher dispersal probabilities and stronger evolution-mediated priority effects. When all species evolved dispersal, they monopolized fewer patches and did so at the same rates. When only one of the species evolved dispersal, it evolved lower dispersal than highly dispersive species and monopolized habitats once freed from maladaptive gene flow. Overall, we demonstrate that dispersal evolution can shape evolution-mediated priority effects when provided with a greater ecological opportunity in species-poor communities. Dispersal- and evolution-mediated priority effects probably play greater roles in species-poor regions like the upper latitudes, isolated islands and in changing environments. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.


Asunto(s)
Distribución Animal , Biodiversidad , Evolución Biológica , Modelos Biológicos , Ecosistema , Animales
20.
Evol Lett ; 8(1): 172-187, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38370544

RESUMEN

Predicting if, when, and how populations can adapt to climate change constitutes one of the greatest challenges in science today. Here, we build from contributions to the special issue on evolutionary adaptation to climate change, a survey of its authors, and recent literature to explore the limits and opportunities for predicting adaptive responses to climate change. We outline what might be predictable now, in the future, and perhaps never even with our best efforts. More accurate predictions are expected for traits characterized by a well-understood mapping between genotypes and phenotypes and traits experiencing strong, direct selection due to climate change. A meta-analysis revealed an overall moderate trait heritability and evolvability in studies performed under future climate conditions but indicated no significant change between current and future climate conditions, suggesting neither more nor less genetic variation for adapting to future climates. Predicting population persistence and evolutionary rescue remains uncertain, especially for the many species without sufficient ecological data. Still, when polled, authors contributing to this special issue were relatively optimistic about our ability to predict future evolutionary responses to climate change. Predictions will improve as we expand efforts to understand diverse organisms, their ecology, and their adaptive potential. Advancements in functional genomic resources, especially their extension to non-model species and the union of evolutionary experiments and "omics," should also enhance predictions. Although predicting evolutionary responses to climate change remains challenging, even small advances will reduce the substantial uncertainties surrounding future evolutionary responses to climate change.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda