Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Phys Chem Chem Phys ; 25(6): 4987-4996, 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36722865

RESUMEN

The influence of a homogeneous constant electric field on water properties was assessed. We used a simple two-dimensional statistical mechanical model called the Mercedes-Benz (MB) model of water in the study. The MB water molecules are two-dimensional disks with Gaussian arms that mimic the formation of hydrogen bonds. The model is modified with added charges for interaction with the electric field. The influence of the strength of the electric field on the water's properties was studied using Monte Carlo simulations. The structure and thermodynamics of the water were determined as a function of the strength of the electric field. We observed that the properties and phase transitions of the water in the low strength electric field does not change. In contrast, the high strength electric field shifts boiling and melting points as well as the position of the density maxima. After further increasing the strength of the electric field the density anomaly disappears.

2.
J Chem Phys ; 159(11)2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37732557

RESUMEN

Orientation-dependent integral equation theory (ODIET) was applied to the rose water model. Structural and thermodynamic properties of water modeled with the rose model were calculated using ODIET and compared to results from orientation-averaged integral equation theory (IET) and Monte Carlo simulations. Rose water model is a simple two-dimensional water model where molecules of water are represented as Lennard-Jones disks with explicit hydrogen bonding potential in form of rose functions. Orientational dependency significantly improves IET, as the thermodynamic results obtained using ODIET are significantly more in agreement with results calculated using MC than in the case of the orientationally averaged version. At high temperatures, the agreement between the simulation and theory is quantitative; however, when temperatures lower, a slight deviation between results obtained with different methods appear. ODIET correctly predicts the radial distribution function; moreover, ODIet also enables the calculation of angular distributions. While the angular distributions obtained with ODIET are in qualitative agreement with distributions from MC simulations, the height of the peaks in angular distributions differs between methods. Using results from ODIET, the spatial distribution of water molecules was constructed, which aids in the interpretation of other structural properties. ODIET was also used to calculate fractions of molecules with different number of hydrogen bonds, which is in the agreement with the simulations. Overall, use of ODIET significantly improves the obtained results in comparison to standard IET.

3.
J Mol Liq ; 3842023 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39188752

RESUMEN

The density, diffusion, and structural anomalies of the simple two-dimensional model of water were determined by Monte Carlo simulations. The rose model was used which is a very simple model for explaining the origin of water properties. Rose water molecules are modelled as two-dimensional Lennard-Jones disks with rose potentials for orientation dependent pairwise interactions mimicking formations of hydrogen bonds. The model can be seen also as a variance of silica-like models. Two parameters of potential in this work were selected in a way that (1) the model exhibits similar properties to Mercedes-Benz (MB) water model; and (2) that the model has real-like properties of water. Beside the known thermodynamic anomaly for the model we also found diffusion and structural anomalies. The orientational order parameters were calculated and maximum encountered for three and six-fold symmetry. For the MB parametrization, the anomalies occur in hierarchy order, which is a slight variation of the hierarchy order in real water. The diffusion anomaly region is the innermost in the hierarchy while for water it is the density anomaly region. In case of real water parametrization the most inner is the structural anomaly.

4.
J Mol Liq ; 3862023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37435361

RESUMEN

The two-dimensional Mercedes-Benz model of water has been studied by molecular simulations over a wide range of thermodynamic conditions as an attempt to locate the supercooled region where a liquid-liquid separation and, potentially, also other structures may occur. Both the correlation functions and a number of local structure factors have been used to identify different structural arrangements. These include, in addition to the hexatic phase, also the hexagon, pentagon, and quadruplet arrangements. All these structures result from the competition between the hydrogen bonding and Lennard-Jones interactions and their effect at different temperatures and pressures. Based on the obtained results, an attempt is made to sketch a (rather complex) phase diagram of the model.

5.
Entropy (Basel) ; 25(12)2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38136498

RESUMEN

In this study, we investigate the impact of magnetic fields on the structural and thermodynamic properties of water. To accomplish this, we employed the Mercedes-Benz (MB) model, a two-dimensional representation of water using Lennard-Jones disks with angle-dependent interactions that closely mimic hydrogen bond formation. We extended the MB model by introducing two charges to enable interaction with the magnetic field. Employing molecular dynamics simulations, we thoroughly explored the thermodynamic properties concerning various magnetic flux intensities. As a result, we observed that under a weak magnetic flux, the property of water remained unaltered, while a stronger flux astonishingly led to the freezing of water molecules. Furthermore, our study revealed that once a specific flux magnitude was reached, the density anomaly disappeared, and an increase in flux caused the MB particles to form a glassy state.

6.
J Mol Liq ; 3492022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-37727581

RESUMEN

We have developed isothermal-isobaric algorithm for non-equilibrium Monte Carlo simulations. As first we have shown that the new method correctly predict density by comparing it to the density determined in canonical Monte Carlo simulations through the virial pressure. The new method was then used to study the effect of translational and rotational degrees of freedom on the structural and thermodynamic properties of the simple Mercedes-Benz water model. By holding one of the temperatures constant and varying the other one, we investigated how the position of the density maxima changes. We have observed that upon increase of rotational temperature the fluid become more Lennard-Jones like and the density maxima disappears.

7.
J Mol Liq ; 3452022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37727780

RESUMEN

Monte Carlo simulations, molecular dynamics and integral equation theory were used to study the thermodynamics and structure of particles interacting through the core softened interaction. Core-softened disks have two length scales of interaction, a hard core with one diameter and a soft corona with a larger diameter. We checked the possibility that a fluid with a core-softened potential reproduces anomalies of liquid water and attempted to determine the critical points which we did not observe nor with computer simulations nor with integral equations. We showed that some versions of the integral equation theory completely fail to predict structure and thermodynamics of such system, while others predict it quite well depending on the position in phase space.

8.
J Mol Liq ; 368(Pt A)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37731589

RESUMEN

The properties of water are vastly affected by its local environment or in other words the system in which water is present. There are many systems in which water is confined in pores of different sizes and shapes. We studied the system in which porous media consisted of quenched Lennard-Jones disks and water modelled as rose water which was allowed to move inside pores. Associative replica Ornstein-Zernike theory was used to calculate the properties of the system. The accuracy of the theory under different conditions was tested against Monte Carlo simulations. The advantage of the theory is that it is magnitudes faster than computer simulations. From pair distribution functions calculated with the theory, the effects of different conditions on the structure of the system was investigated. We also studied how different conditions such as fluid temperature, fluid density, matrix density and matrix particle size affect a fraction of bonded molecules, excess internal energy and isothermal compressibility.

9.
J Mol Liq ; 368(Pt A)2022 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37731590

RESUMEN

Simple alcohols such as methanol and ethanol, are organic chemicals that can be used to store energy, which can be used as an alternative to fossil fuels. Each alcohol has at least one hydroxyl group attached to a carbon atom of an alkyl group. They can be considered as organic derivatives of water in which one of the hydrogen atoms is replaced by an alkyl group. In this work, we determined the thermodynamic and structural properties of two dimensional water-alcohol mixtures using the Monte Carlo method. We used two-dimensional Mercedes-Benz (MB) model for water and MB based models for lower alcohols. The structural and thermodynamic properties of the mixtures were studied by Monte Carlo simulations in the isothermal-isobaric ensemble. We show that 2D models display similar trends in the density maxima as in real water-alcohol mixtures. With increasing content of alcohols, the temperature of maxima increases and upon further increase starts to decrease and at high concentrations, the density maxima disappears.

10.
J Chem Phys ; 150(2): 024705, 2019 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-30646695

RESUMEN

The behavior of water, methanol, and water-methanol mixtures confined in narrow slit graphite pores as a function of pore size was investigated by Monte Carlo, hybrid Monte Carlo, and Molecular Dynamics simulations. Interactions were described using TIP4P/2005 for water, OPLS/2016 for methanol, and cross interactions fitted to excess water/methanol properties over the whole range of concentrations, which provide a rather accurate description of water-methanol mixtures. As expected for hydrophobic pores, whereas pure methanol is adsorbed already from the gas phase, pure water only enters the pore at pressures well beyond bulk saturation for all pore sizes considered. When adsorbed from a mixture, however, water adsorbs at much lower pressures due to the formation of hydrogen bonds with previously adsorbed methanol molecules. For all studied compositions and pore sizes, methanol adsorbs preferentially over water at liquid-vapor equilibrium conditions. In pure components, both water and methanol are microscopically structured in layers, the number of layers increasing with pore size. This is also the case in adsorbed mixtures, in which methanol has a higher affinity for the walls. This becomes more evident as the pore widens. Diffusion of pure water is higher than that of pure methanol for all pore sizes due to the larger size of the methyl group. In mixtures, both components present similar diffusivities at all pore sizes, which is explained in terms of the coupling of molecular movements due to strong hydrogen bonding between methanol and water molecules. This is particularly evident in very narrow pores, in which pure methanol diffusion is completely impeded on the time scale of our simulations, but the presence of a small amount of water molecules facilitates alcohol diffusion following a single-file mechanism. Additionally, our results indicate that pure water diffusivities display a non-monotonous dependence of pore size, due to effects of confinement (proximity to a fluid-solid-fluid transition induced by confinement as reported in previous work) and the dynamic anomalies of water.

11.
J Am Chem Soc ; 140(49): 17106-17113, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30461279

RESUMEN

Liquid water is considered poorly understood. How are water's physical properties encoded in its molecular structure? We introduce a statistical mechanical model (CageWater) of water's hydrogen-bonding (HB) and Lennard-Jones (LJ) interactions. It predicts the energetic and volumetric and anomalous properties accurately. Yet, because the model is analytical, it is essentially instantaneous to compute. This model advances our understanding beyond current molecular simulations and experiments. Water has long been regarded as a "2-density liquid": a dense LJ liquid and a looser HB one. Instead, we find here a different antagonism underlying water structure-property relations: HBs in water-water pairs drive density, while HBs in cooperative cages drive openness. The balance shifts strongly with temperature and pressure. This model interprets the molecular structures underlying the liquid-liquid phase transition in supercooled water. It may have value in geophysics, biomolecular modeling, and engineering of materials for water purification and green chemistry.


Asunto(s)
Agua/química , Enlace de Hidrógeno , Modelos Químicos , Transición de Fase , Presión , Electricidad Estática , Temperatura , Termodinámica
12.
Chem Phys ; 507: 34-43, 2018 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-30364625

RESUMEN

One of the most important electrostatic interactions between molecules is most definitely the hydrogen bond. Understanding the basis of this interaction may offer us the insight needed to understand its effect on the macroscopic scale. Hydrogen bonding is for example the reason for anomalous properties in compounds like water and naturally life as we know it. The strength of the bond depends on numerous factors, among them the electronegativity of participating atoms. In this work we calculated the strength of hydrogen bonds between hydrides of the upper-right part of the periodic table (C, N, O, F, P, S, Cl, As, Se, Br) using quantum-chemical methods. The aim was to determine what influences the strength of strong and weak hydrogen bonds in simple hydrides. Various relationships were checked. A relation between the strength of the bond and the electronegativity of the participating atoms was found. We also observed a correlation between the strength of hydrogen bonds and the inter-atomic distances, along with the dependence on the charge transfer on the atom of the donor. We also report characteristic geometries of different dimers.

13.
J Mol Liq ; 270: 87-96, 2018 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-30546180

RESUMEN

In this paper we propose a model for the two dimensional fluid with one site-site associating point. We studied its structural and thermodynamic properties by the Monte Carlo computer simulations, the site-site integral equation theory (RISM), the Wertheim's thermodynamic perturbation theory (TPT) and the Wertheim's integral equation theory (WIET) for associative liquids. The model can have arbitrary position of the associating point from the center of particles. All particles have Lennard-Jones core while interactions between associating points are modeled as Gaussian like potential where the interaction depends only on the distance between sites. The methods were used to study the thermodynamic and structural properties as a function of the position of associating point, temperature and density. The accuracy of the analytic theories were checked by comparing the theoretical results with the corresponding Monte Carlo ones. The theories are quite accurate for cases when the associating point is on the surface and only dimers can be formed. In this case, the theories correctly predict the pair correlation functions of the model, internal energy, ratios of free and bonded particles and chemical potential. This is no longer true when associating point is away from the surface of particles and the higher clusters are formed.

14.
J Mol Liq ; 262: 46-57, 2018 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-30364695

RESUMEN

Methanol is the simplest alcohol and possible energy carrier because it is easier to store than hydrogen and burns cleaner than fossil fuels. It is a colorless liquid, completely miscible with water and organic solvents and is very hygroscopic. Here, simple two-dimensional models of methanol, based on Mercedes-Benz (MB) model of water, are examined by Monte Carlo simulations. Methanol particles are modeled as dimers formed by an apolar Lennard-Jones disk, mimicking the methyl group, and a sphere with two hydrogen bonding arms for the hydroxyl group. The used models are the one proposed by Hribar-Lee and Dill (Acta Chimica Slovenica, 53:257, 2006.) with the overlapping discs and a new model with tangentially fused dimers. The comparison was done between the models, in connection to the MB water, as well as with experimental results and with new simulations done for 3D models of methanol. Both 2D models show similar trends in structuring and thermodynamics. The difference is the most pronounced at lower temperatures, where the smaller model exhibits spontaneous crystallization, while the larger model shows metastable states. The 2D structural organization represents well the clustering tendency observed in 3D models, as well as in experiments. The models qualitatively agree with the bulk methanol thermodynamic properties like density and isothermal compressibility, however, heat capacity at the constant pressure shows trend more similar to the water behavior. This work on the smallest amphiphilic organic solute provides a simple testing ground to study the competition between polar and non-polar effects within the molecule and physical properties.

15.
J Mol Liq ; 228: 32-37, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28529396

RESUMEN

In this paper we applied an analytical theory for the two dimensional dimerising fluid. We applied Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids to the dimerising model with arbitrary position of dimerising points from center of the particles. The theory was used to study thermodynamical and structural properties. To check the accuracy of the theories we compared theoretical results with corresponding results obtained by Monte Carlo computer simulations. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. IET correctly predicts the pair correlation function of the model. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, pressure, chemical potential, compressibility and ratios of free and bonded particles.

16.
J Mol Liq ; 238: 129-135, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28729752

RESUMEN

In this paper we applied analytical theories for the two dimensional chain-forming fluid. Wertheims thermodynamic perturbation theory (TPT) and integral equation theory (IET) for associative liquids were used to study thermodynamical and structural properties of the chain-forming model. The model has polymerizing points at arbitrary position from center of the particles. Calculated analytical results were tested against corresponding results obtained by Monte Carlo computer simulations to check the accuracy of the theories. The theories are accurate for the different positions of patches of the model at all values of the temperature and density studied. The IET's pair correlation functions of the model agree well with computer simulations. Both TPT and IET are in good agreement with the Monte Carlo values of the energy, chemical potential and ratios of free, once and twice bonded particles.

17.
J Chem Phys ; 145(19): 194503, 2016 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-27875894

RESUMEN

Structural and thermodynamic properties of a planar heterogeneous soft dumbbell fluid are examined using Monte Carlo simulations and integral equation theory. Lennard-Jones particles of different sizes are the building blocks of the dimers. The site-site integral equation theory in two dimensions is used to calculate the site-site radial distribution functions and the thermodynamic properties. Obtained results are compared to Monte Carlo simulation data. The critical parameters for selected types of dimers were also estimated and the influence of the Lennard-Jones parameters was studied. We have also tested the correctness of the site-site integral equation theory using different closures.

18.
J Chem Phys ; 142(1): 014506, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25573571

RESUMEN

Properties of superconducting and superfluid thin films, modeled as a two-dimensional classic Coulomb fluid, are connected to the molecular structure of the system. Monte Carlo simulations to explore structural properties and ordering in the classical two-dimensional Coulomb fluid were performed. The density dependence of translational order parameters at various temperatures and cluster distribution below and above the Kosterlitz-Thouless line were studied, and the percolation temperature threshold was determined. Results show that one could detect the insulator-conductor transition by observing the translational order parameters, average cluster number, or mean cluster size besides dielectric constant and dipole moment of the system.


Asunto(s)
Electrólitos/química , Método de Montecarlo , Estructura Molecular , Temperatura
19.
J Chem Phys ; 142(21): 214508, 2015 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-26049509

RESUMEN

The phase behavior and the fluid structure of coarse-grain models for alcohols are studied by means of reference interaction site model (RISM) theory and Monte Carlo simulations. Specifically, we model ethanol and 1-propanol as linear rigid chains constituted by three (trimers) and four (tetramers) partially fused spheres, respectively. Thermodynamic properties of these models are examined in the RISM context, by employing closed formulæ for the calculation of free energy and pressure. Gas-liquid coexistence curves for trimers and tetramers are reported and compared with already existing data for a dimer model of methanol. Critical temperatures slightly increase with the number of CH2 groups in the chain, while critical pressures and densities decrease. Such a behavior qualitatively reproduces the trend observed in experiments on methanol, ethanol, and 1-propanol and suggests that our coarse-grain models, despite their simplicity, can reproduce the essential features of the phase behavior of such alcohols. The fluid structure of these models is investigated by computing radial distribution function gij(r) and static structure factor Sij(k); the latter shows the presence of a low-k peak at intermediate-high packing fractions and low temperatures, suggesting the presence of aggregates for both trimers and tetramers.

20.
Acta Chim Slov ; 62(3): 574-81, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26454591

RESUMEN

Understanding the spatial folding of proteins from their amino acid sequences has an enormous potential in contemporary life sciences. The ability to predict secondary and tertiary structures from primary ones through the use of computers will enable a much faster and more efficient discovery of organic substances with therapeutic or otherwise bioactive potential, largely eliminating the need for synthesis and testing of large numbers of organic substances for physiological effects. Our manuscript presents an application of correlation function analysis, usually used to describe properties of liquids, to protein structures in order to elucidate statistically favored distances among amino acids. Pairwise distribution functions were calculated between C-alpha atoms of 20 amino acids in a large ensemble of Protein Data Bank structures. The correlation functions show characteristic distances in amino acid interactions. Different propensities for forming various secondary structure elements among all 210 possible amino acid pairs have been visualized and some have been interpreted. Notably, we found helices to be surprisingly common among certain pairs.


Asunto(s)
Aminoácidos , Biología Computacional , Proteínas/química , Bases de Datos de Proteínas , Modelos Moleculares , Pliegue de Proteína , Estructura Secundaria de Proteína
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda