Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Oecologia ; 204(4): 761-774, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38536504

RESUMEN

Xylosandrus crassiusculus is an invasive ambrosia beetle comprising two differentiated genetic lineages, named cluster 1 and cluster 2. These lineages invaded different parts of the world at different periods of time. We tested whether they exhibited different climatic niches using Schoener's D and Hellinger's I indices and modeled their current potential geographical ranges using the Maxent algorithm. The resulting models were projected according to future and recent past climate datasets for Europe and the Mediterranean region. The future projections were performed for the periods 2041-2070 and 2071-2100 using 3 SSPs and 5 GCMs. The genetic lineages exhibited different climate niches. Parts of Europe, the Americas, Sub-Saharan Africa, Asia, and Oceania were evaluated as suitable for cluster 1. Parts of Europe, South America, Central and South Africa, Asia, and Oceania were considered as suitable for cluster 2. Models projection under future climate scenarios indicated a decrease in climate suitability in Southern Europe and an increase in North Eastern Europe in 2071-2100. Most of Southern and Western Europe was evaluated as already suitable for both clusters in the early twentieth century. Our results show that large climatically suitable regions still remain uncolonized and that climate change will affect the geographical distribution of climatically suitable areas. Climate conditions in Europe were favorable in the twentieth century, suggesting that the recent colonization of Europe is rather due to an increase in propagule pressure via international trade than to recent environmental changes.


Asunto(s)
Cambio Climático , Escarabajos , Especies Introducidas , Animales , Europa (Continente) , Modelos Biológicos , Ecosistema
2.
Mol Ecol ; 32(15): 4381-4400, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37211644

RESUMEN

Xylosandrus crassiusculus, a fungus-farming wood borer native to Southeastern Asia, is the most rapidly spreading invasive ambrosia species worldwide. Previous studies focusing on its genetic structure suggested the existence of cryptic genetic variation in this species. Yet, these studies used different genetic markers, focused on different geographical areas and did not include Europe. Our first goal was to determine the worldwide genetic structure of this species based on both mitochondrial and genomic markers. Our second goal was to study X. crassiusculus' invasion history on a global level and identify the origins of the invasion in Europe. We used a COI and RAD sequencing design to characterize 188 and 206 specimens worldwide, building the most comprehensive genetic data set for any ambrosia beetle to date. The results were largely consistent between markers. Two differentiated genetic clusters were invasive, albeit in different regions of the world. The markers were inconsistent only for a few specimens found exclusively in Japan. Mainland USA could have acted as a source for further expansion to Canada and Argentina through stepping stone expansion and bridgehead events. We showed that Europe was only colonized by Cluster II through a complex invasion history including several arrivals from multiple origins in the native area, and possibly including bridgehead from the United States. Our results also suggested that Spain was colonized directly from Italy through intracontinental dispersion. It is unclear whether the mutually exclusive allopatric distribution of the two clusters is due to neutral effects or due to different ecological requirements.


Asunto(s)
Escarabajos , Gorgojos , Animales , Escarabajos/genética , Ambrosia/genética , Metagenómica , Europa (Continente) , Especies Introducidas
3.
Sci Rep ; 11(1): 1339, 2021 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-33446689

RESUMEN

Xylosandrus compactus and X. crassiusculus are two polyphagous ambrosia beetles originating from Asia and invasive in circumtropical regions worldwide. Both species were recently reported in Italy and further invaded several other European countries in the following years. We used the MaxEnt algorithm to estimate the suitable areas worldwide for both species under the current climate. We also made future projections for years 2050 and 2070 using 11 different General Circulation Models, for 4 Representative Concentration Pathways (2.6, 4.5, 6.0 and 8.5). Our analyses showed that X. compactus has not been reported in all potentially suitable areas yet. Its current distribution in Europe is localised, whereas our results predicted that most of the periphery of the Mediterranean Sea and most of the Atlantic coast of France could be suitable. Outside Europe, our results also predicted Central America, all islands in Southeast Asia and some Oceanian coasts as suitable. Even though our results when modelling its potential distribution under future climates were more variable, the models predicted an increase in suitability poleward and more uncertainty in the circumtropical regions. For X. crassiusculus, the same method only yielded poor results, and the models thus could not be used for predictions. We discuss here these results and propose advice about risk prevention and invasion management of both species.


Asunto(s)
Cambio Climático , Escarabajos/fisiología , Ecosistema , Especies Introducidas , Modelos Biológicos , Animales , Escarabajos/clasificación , Europa (Continente)
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda