Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
EMBO J ; 43(17): 3752-3786, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39009675

RESUMEN

Cytokinetic abscission marks the final stage of cell division, during which the daughter cells physically separate through the generation of new barriers, such as the plasma membrane or cell wall. While the contractile ring plays a central role during cytokinesis in bacteria, fungi and animal cells, the process diverges in Apicomplexa. In Toxoplasma gondii, two daughter cells are formed within the mother cell by endodyogeny. The mechanism by which the progeny cells acquire their plasma membrane during the disassembly of the mother cell, allowing daughter cells to emerge, remains unknown. Here we identify and characterize five T. gondii proteins, including three protein phosphatase 2A subunits, which exhibit a distinct and dynamic localization pattern during parasite division. Individual downregulation of these proteins prevents the accumulation of plasma membrane at the division plane, preventing the completion of cellular abscission. Remarkably, the absence of cytokinetic abscission does not hinder the completion of subsequent division cycles. The resulting progeny are able to egress from the infected cells but fail to glide and invade, except in cases of conjoined twin parasites.


Asunto(s)
Citocinesis , Proteína Fosfatasa 2 , Proteínas Protozoarias , Toxoplasma , Toxoplasma/enzimología , Toxoplasma/genética , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Proteína Fosfatasa 2/metabolismo , Proteína Fosfatasa 2/genética , Membrana Celular/metabolismo , Animales , División Celular , Humanos
2.
Mol Cell ; 71(2): 343-351.e4, 2018 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-30029007

RESUMEN

Class II phosphoinositide 3-kinases (PI3K-C2) are large multidomain enzymes that control cellular functions ranging from membrane dynamics to cell signaling via synthesis of 3'-phosphorylated phosphoinositides. Activity of the alpha isoform (PI3K-C2α) is associated with endocytosis, angiogenesis, and glucose metabolism. How PI3K-C2α activity is controlled at sites of endocytosis remains largely enigmatic. Here we show that the lipid-binding PX-C2 module unique to class II PI3Ks autoinhibits kinase activity in solution but is essential for full enzymatic activity at PtdIns(4,5)P2-rich membranes. Using HDX-MS, we show that the PX-C2 module folds back onto the kinase domain, inhibiting its basal activity. Destabilization of this intramolecular contact increases PI3K-C2α activity in vitro and in cells, leading to accumulation of its lipid product, increased recruitment of the endocytic effector SNX9, and facilitated endocytosis. Our studies uncover a regulatory mechanism in which coincident binding of phosphoinositide substrate and cofactor selectively activate PI3K-C2α at sites of endocytosis.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II/metabolismo , Fosfatidilinositol 3-Quinasas Clase II/fisiología , Fosfatidilinositol 3-Quinasas/fisiología , Animales , Dominios C2/fisiología , Células COS , Chlorocebus aethiops , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/fisiología , Clatrina/fisiología , Endocitosis/fisiología , Células HEK293 , Homeostasis , Humanos , Lípidos/fisiología , Espectrometría de Masas , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Unión Proteica , Dominios Proteicos , Transducción de Señal
3.
Angew Chem Int Ed Engl ; 63(3): e202314587, 2024 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-37949836

RESUMEN

Preventing the misfolding or aggregation of transactive response DNA binding protein with 43 kDa (TDP-43) is the most actively pursued disease-modifying strategy to treat amyotrophic lateral sclerosis and other neurodegenerative diseases. In this work, we provide proof of concept that native state stabilization of TDP-43 is a viable and effective strategy for treating TDP-43 proteinopathies. Firstly, we leveraged the Cryo-EM structures of TDP-43 fibrils to design C-terminal substitutions that disrupt TDP-43 aggregation. Secondly, we showed that these substitutions (S333D/S342D) stabilize monomeric TDP-43 without altering its physiological properties. Thirdly, we demonstrated that binding native oligonucleotide ligands stabilized monomeric TDP-43 and prevented its fibrillization and phase separation in the absence of direct binding to the aggregation-prone C-terminal domain. Fourthly, we showed that the monomeric TDP-43 variant could be induced to aggregate in a controlled manner, which enabled the design and implementation of a high-throughput screening assay to identify native state stabilizers of TDP-43. Altogether, our findings demonstrate that different structural domains in TDP-43 could be exploited and targeted to develop drugs that stabilize the native state of TDP-43 and provide a platform to discover novel drugs to treat TDP-43 proteinopathies.


Asunto(s)
Esclerosis Amiotrófica Lateral , Enfermedades Neurodegenerativas , Proteinopatías TDP-43 , Humanos , Proteinopatías TDP-43/genética , Proteinopatías TDP-43/metabolismo , Esclerosis Amiotrófica Lateral/metabolismo , Proteínas de Unión al ADN/química
4.
RNA Biol ; 17(5): 637-650, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32050838

RESUMEN

RNA helicases are fundamental players in RNA metabolism: they remodel RNA secondary structures and arrange ribonucleoprotein complexes. While DExH-box RNA helicases function in ribosome biogenesis and splicing in eukaryotes, information is scarce about bacterial homologs. HrpB is the only bacterial DExH-box protein whose structure is solved. Besides the catalytic core, HrpB possesses three accessory domains, conserved in all DExH-box helicases, plus a unique C-terminal extension (CTE). The function of these auxiliary domains remains unknown. Here, we characterize genetically and biochemically Pseudomonas aeruginosa HrpB homolog. We reveal that the auxiliary domains shape HrpB RNA preferences, affecting RNA species recognition and catalytic activity. We show that, among several types of RNAs, the single-stranded poly(A) and the highly structured MS2 RNA strongly stimulate HrpB ATPase activity. In addition, deleting the CTE affects only stimulation by structured RNAs like MS2 and rRNAs, while deletion of accessory domains results in gain of poly(U)-dependent activity. Finally, using hydrogen-deuterium exchange, we dissect the molecular details of HrpB interaction with poly(A) and MS2 RNAs. The catalytic core interacts with both RNAs, triggering a conformational change that reorients HrpB. Regions within the accessory domains and CTE are, instead, specifically responsive to MS2. Altogether, we demonstrate that in bacteria, like in eukaryotes, DExH-box helicase auxiliary domains are indispensable for RNA handling.


Asunto(s)
Proteínas Bacterianas/química , ARN Helicasas DEAD-box/química , ARN/química , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Sitios de Unión , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Modelos Moleculares , Mutación , Fenotipo , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , Pseudomonas aeruginosa , ARN/metabolismo , Eliminación de Secuencia , Relación Estructura-Actividad
5.
Proc Natl Acad Sci U S A ; 114(8): 1982-1987, 2017 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-28167755

RESUMEN

Activated PI3K Delta Syndrome (APDS) is a primary immunodeficiency disease caused by activating mutations in either the leukocyte-restricted p110δ catalytic (PIK3CD) subunit or the ubiquitously expressed p85α regulatory (PIK3R1) subunit of class IA phosphoinositide 3-kinases (PI3Ks). There are two classes of APDS: APDS1 that arises from p110δ mutations that are analogous to oncogenic mutations found in the broadly expressed p110α subunit and APDS2 that occurs from a splice mutation resulting in p85α with a central deletion (Δ434-475). As p85 regulatory subunits associate with and inhibit all class IA catalytic subunits, APDS2 mutations are expected to similarly activate p110α, ß, and δ, yet APDS2 largely phenocopies APDS1 without dramatic effects outside the immune system. We have examined the molecular mechanism of activation of both classes of APDS mutations using a combination of biochemical assays and hydrogen-deuterium exchange mass spectrometry. Intriguingly, we find that an APDS2 mutation in p85α leads to substantial basal activation of p110δ (>300-fold) and disrupts inhibitory interactions from the nSH2, iSH2, and cSH2 domains of p85, whereas p110α is only minimally basally activated (∼2-fold) when associated with mutated p85α. APDS1 mutations in p110δ (N334K, E525K, E1021K) mimic the activation mechanisms previously discovered for oncogenic mutations in p110α. All APDS mutations were potently inhibited by the Food and Drug Administration-approved p110δ inhibitor idelalisib. Our results define the molecular basis of how PIK3CD and PIK3R1 mutations result in APDS and reveal a potential path to treatment for all APDS patients.


Asunto(s)
Dominio Catalítico/genética , Fosfatidilinositol 3-Quinasa Clase I/genética , Inhibidores Enzimáticos/farmacología , Síndromes de Inmunodeficiencia/genética , Fosfatidilinositol 3-Quinasas/genética , Purinas/farmacología , Quinazolinonas/farmacología , Membrana Celular/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/antagonistas & inhibidores , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Fosfatidilinositol 3-Quinasa Clase Ia , Pruebas de Enzimas , Inhibidores Enzimáticos/uso terapéutico , Mutación con Ganancia de Función , Humanos , Síndromes de Inmunodeficiencia/tratamiento farmacológico , Espectrometría de Masas/métodos , Modelos Moleculares , Fenotipo , Fosfatidilinositol 3-Quinasas/metabolismo , Enfermedades de Inmunodeficiencia Primaria , Conformación Proteica , Purinas/uso terapéutico , Quinazolinonas/uso terapéutico , Ensayos Clínicos Controlados Aleatorios como Asunto , Eliminación de Secuencia
6.
Mol Cell ; 41(5): 567-78, 2011 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-21362552

RESUMEN

Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110ß/p85ß complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110ß catalytic subunit, which is essential for lipid kinase activity. In vitro, p110ß basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110ß. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ia/metabolismo , Regulación Enzimológica de la Expresión Génica , Secuencias de Aminoácidos , Animales , Sitios de Unión , Humanos , Enlace de Hidrógeno , Insectos , Ratones , Mutagénesis , Mutación , Fosforilación , Conformación Proteica , Estructura Terciaria de Proteína , Dominios Homologos src
7.
Biochem J ; 469(1): 59-69, 2015 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-26173259

RESUMEN

Class IB phosphoinositide 3-kinases γ (PI3Kγ) are second-messenger-generating enzymes downstream of signalling cascades triggered by G-protein-coupled receptors (GPCRs). PI3Kγ variants have one catalytic p110γ subunit that can form two different heterodimers by binding to one of a pair of non-catalytic subunits, p87 or p101. Growing experimental data argue for a different regulation of p87-p110γ and p101-p110γ allowing integration into distinct signalling pathways. Pharmacological tools enabling distinct modulation of the two variants are missing. The ability of an anti-p110γ monoclonal antibody [mAb(A)p110γ] to block PI3Kγ enzymatic activity attracted us to characterize this tool in detail using purified proteins. In order to get insight into the antibody-p110γ interface, hydrogen-deuterium exchange coupled to MS (HDX-MS) measurements were performed demonstrating binding of the monoclonal antibody to the C2 domain in p110γ, which was accompanied by conformational changes in the helical domain harbouring the Gßγ-binding site. We then studied the modulation of phospholipid vesicles association of PI3Kγ by the antibody. p87-p110γ showed a significantly reduced Gßγ-mediated phospholipid recruitment as compared with p101-p110γ. Concomitantly, in the presence of mAb(A)p110γ, Gßγ did not bind to p87-p110γ. These data correlated with the ability of the antibody to block Gßγ-stimulated lipid kinase activity of p87-p110γ 30-fold more potently than p101-p110γ. Our data argue for differential regulatory functions of the non-catalytic subunits and a specific Gßγ-dependent regulation of p101 in PI3Kγ activation. In this scenario, we consider the antibody as a valuable tool to dissect the distinct roles of the two PI3Kγ variants downstream of GPCRs.


Asunto(s)
Anticuerpos Monoclonales de Origen Murino/química , Fosfatidilinositol 3-Quinasa Clase Ib , Subunidades beta de la Proteína de Unión al GTP , Subunidades gamma de la Proteína de Unión al GTP , Animales , Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Medición de Intercambio de Deuterio , Subunidades beta de la Proteína de Unión al GTP/química , Subunidades beta de la Proteína de Unión al GTP/genética , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Subunidades gamma de la Proteína de Unión al GTP/química , Subunidades gamma de la Proteína de Unión al GTP/genética , Subunidades gamma de la Proteína de Unión al GTP/metabolismo , Células HEK293 , Humanos , Células Sf9 , Spodoptera
8.
Proc Natl Acad Sci U S A ; 110(47): 18862-7, 2013 Nov 19.
Artículo en Inglés | MEDLINE | ID: mdl-24190998

RESUMEN

Phosphoinositide 3-kinase gamma (PI3Kγ) has profound roles downstream of G-protein-coupled receptors in inflammation, cardiac function, and tumor progression. To gain insight into how the enzyme's activity is shaped by association with its p101 adaptor subunit, lipid membranes, and Gßγ heterodimers, we mapped these regulatory interactions using hydrogen-deuterium exchange mass spectrometry. We identify residues in both the p110γ and p101 subunits that contribute critical interactions with Gßγ heterodimers, leading to PI3Kγ activation. Mutating Gßγ-interaction sites of either p110γ or p101 ablates G-protein-coupled receptor-mediated signaling to p110γ/p101 in cells and severely affects chemotaxis and cell transformation induced by PI3Kγ overexpression. Hydrogen-deuterium exchange mass spectrometry shows that association with the p101 regulatory subunit causes substantial protection of the RBD-C2 linker as well as the helical domain of p110γ. Lipid interaction massively exposes that same helical site, which is then stabilized by Gßγ. Membrane-elicited conformational change of the helical domain could help prepare the enzyme for Gßγ binding. Our studies and others identify the helical domain of the class I PI3Ks as a hub for diverse regulatory interactions that include the p101, p87 (also known as p84), and p85 adaptor subunits; Rab5 and Gßγ heterodimers; and the ß-adrenergic receptor kinase.


Asunto(s)
Fosfatidilinositol 3-Quinasa Clase Ib/química , Fosfatidilinositol 3-Quinasa Clase Ib/metabolismo , Modelos Moleculares , Fosfatidilinositol 3-Quinasas/metabolismo , Conformación Proteica , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal/fisiología , Animales , Quimiotaxis , Fosfatidilinositol 3-Quinasa Clase Ib/genética , Medición de Intercambio de Deuterio , Activación Enzimática , Células HEK293 , Humanos , Espectrometría de Masas , Ratones , Microscopía Confocal , Células 3T3 NIH , Receptores Acoplados a Proteínas G/agonistas , Transducción de Señal/genética , Proteínas ras/metabolismo
9.
Biochem Soc Trans ; 43(5): 773-86, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26517882

RESUMEN

Many cellular signalling events are controlled by the selective recruitment of protein complexes to membranes. Determining the molecular basis for how lipid signalling complexes are recruited, assembled and regulated on specific membrane compartments has remained challenging due to the difficulty of working in conditions mimicking native biological membrane environments. Enzyme recruitment to membranes is controlled by a variety of regulatory mechanisms, including binding to specific lipid species, protein-protein interactions, membrane curvature, as well as post-translational modifications. A powerful tool to study the regulation of membrane signalling enzymes and complexes is hydrogen deuterium exchange-MS (HDX-MS), a technique that allows for the interrogation of protein dynamics upon membrane binding and recruitment. This review will highlight the theory and development of HDX-MS and its application to examine the molecular basis of lipid signalling enzymes, specifically the regulation and activation of phosphoinositide 3-kinases (PI3Ks).


Asunto(s)
Membrana Celular/metabolismo , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Transducción de Señal , Animales , Aniversarios y Eventos Especiales , Distinciones y Premios , Bioquímica , Membrana Celular/química , Membrana Celular/enzimología , Fosfatidilinositol 3-Quinasa Clase I/química , Fosfatidilinositol 3-Quinasa Clase I/genética , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Medición de Intercambio de Deuterio , Humanos , Espectrometría de Masas , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Mutación , Conformación Proteica , Pliegue de Proteína , Transporte de Proteínas , Sociedades Científicas , Reino Unido
10.
Proc Natl Acad Sci U S A ; 109(38): 15259-64, 2012 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-22949682

RESUMEN

The p110α catalytic subunit (PIK3CA) is one of the most frequently mutated genes in cancer. We have examined the activation of the wild-type p110α/p85α and a spectrum of oncogenic mutants using hydrogen/deuterium exchange mass spectrometry (HDX-MS). We find that for the wild-type enzyme, the natural transition from an inactive cytosolic conformation to an activated form on membranes entails four distinct events. Analysis of oncogenic mutations shows that all up-regulate the enzyme by enhancing one or more of these dynamic events. We provide the first insight into the activation mechanism by mutations in the linker between the adapter-binding domain (ABD) and the Ras-binding domain (RBD) (G106V and G118D). These mutations, which are common in endometrial cancers, enhance two of the natural activation events: movement of the ABD and ABD-RBD linker relative to the rest of the catalytic subunit and breaking the C2-iSH2 interface on binding membranes. C2 domain mutants (N345K and C420R) also mimic these events, even in the absence of membranes. A third event is breaking the nSH2-helical domain contact caused by phosphotyrosine-containing peptides binding to the enzyme, which is mimicked by a helical domain mutation (E545K). Interaction of the C lobe of the kinase domain with membranes is the fourth activation event, and is potentiated by kinase domain mutations (e.g., H1047R). All mutations increased lipid binding and basal activity, even mutants distant from the membrane surface. Our results elucidate a unifying mechanism in which diverse PIK3CA mutations stimulate lipid kinase activity by facilitating allosteric motions required for catalysis on membranes.


Asunto(s)
Mutación , Fosfatidilinositol 3-Quinasas/genética , Sitio Alostérico , Animales , Catálisis , Dominio Catalítico , Fosfatidilinositol 3-Quinasa Clase I , Citosol/metabolismo , Neoplasias Endometriales/metabolismo , Activación Enzimática , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Cinética , Lípidos/química , Modelos Moleculares , Conformación Molecular , Movimiento (Física) , Fosfatidilinositol 3-Quinasas/química , Unión Proteica , Estructura Terciaria de Proteína , Transducción de Señal
11.
Pharmaceutics ; 16(4)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675200

RESUMEN

Iontophoresis enables the non-invasive transdermal delivery of moderately-sized proteins and the needle-free cutaneous delivery of antibodies. However, simple descriptors of protein characteristics cannot accurately predict the feasibility of iontophoretic transport. This study investigated the cathodal and anodal iontophoretic transport of the negatively charged M7D12H nanobody and a series of negatively charged variants with single amino acid substitutions. Surprisingly, M7D12H and its variants were only delivered transdermally by anodal iontophoresis. In contrast, transdermal permeation after cathodal iontophoresis and passive diffusion was

12.
RSC Chem Biol ; 5(1): 19-29, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38179191

RESUMEN

The emergence of Plasmodium parasite resistance to current front-line antimalarial treatments poses a serious threat to global malaria control and highlights the necessity for the development of therapeutics with novel targets and mechanisms of action. Plasmepsins IX and X (PMIX/PMX) have been recognised as highly promising targets in Plasmodium due to their contribution to parasite's pathogenicity. Recent research has demonstrated that dual PMIX/PMX inhibition results in the impairment of multiple parasite's life cycle stages, which is an important feature in drug resistance prevention. Herein we report novel hydroxyethylamine photoaffinity labelling (PAL) probes, designed for PMIX/PMX target engagement and proteomics experiments in Plasmodium parasites. The prepared probes have both a photoreactive group (diazirine or benzophenone) for covalent attachment to target proteins, and a terminal alkyne handle allowing their use in bioorthogonal ligation. One of the synthesised benzophenone probes was shown to be highly promising as demonstrated by its outstanding antimalarial potency (IC50 = 15 nM versus D10 P. falciparum) and its inhibitory effect against PfPMX in an enzymatic assay. Molecular docking and molecular dynamics studies show that the inclusion of the benzophenone and alkyne handle does not alter the binding mode compared to the parent compound. The photoaffinity probe can be used in future chemical proteomics studies to allow hydroxyethylamine drug scaffold target identification and validation in Plasmodium. We expect our findings to act as a tool for future investigations on PMIX/PMX inhibition in antimalarial drug discovery.

13.
Science ; 381(6663): 1217-1225, 2023 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-37708276

RESUMEN

The mitogen-activated protein kinase (MAPK) p38α is a central component of signaling in inflammation and the immune response and is, therefore, an important drug target. Little is known about the molecular mechanism of its activation by double phosphorylation from MAPK kinases (MAP2Ks), because of the challenge of trapping a transient and dynamic heterokinase complex. We applied a multidisciplinary approach to generate a structural model of p38α in complex with its MAP2K, MKK6, and to understand the activation mechanism. Integrating cryo-electron microscopy with molecular dynamics simulations, hydrogen-deuterium exchange mass spectrometry, and experiments in cells, we demonstrate a dynamic, multistep phosphorylation mechanism, identify catalytically relevant interactions, and show that MAP2K-disordered amino termini determine pathway specificity. Our work captures a fundamental step of cell signaling: a kinase phosphorylating its downstream target kinase.


Asunto(s)
MAP Quinasa Quinasa 2 , MAP Quinasa Quinasa 6 , Proteína Quinasa 14 Activada por Mitógenos , Microscopía por Crioelectrón , Activación Enzimática , MAP Quinasa Quinasa 2/química , MAP Quinasa Quinasa 6/química , Proteína Quinasa 14 Activada por Mitógenos/química , Fosforilación , Especificidad por Sustrato , Conformación Proteica
14.
Elife ; 122023 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-37014051

RESUMEN

The phylum of Apicomplexa groups intracellular parasites that employ substrate-dependent gliding motility to invade host cells, egress from the infected cells, and cross biological barriers. The glideosome-associated connector (GAC) is a conserved protein essential to this process. GAC facilitates the association of actin filaments with surface transmembrane adhesins and the efficient transmission of the force generated by myosin translocation of actin to the cell surface substrate. Here, we present the crystal structure of Toxoplasma gondii GAC and reveal a unique, supercoiled armadillo repeat region that adopts a closed ring conformation. Characterisation of the solution properties together with membrane and F-actin binding interfaces suggests that GAC adopts several conformations from closed to open and extended. A multi-conformational model for assembly and regulation of GAC within the glideosome is proposed.


Asunto(s)
Toxoplasma , Toxoplasma/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo , Membrana Celular/metabolismo , Miosinas/metabolismo , Proteínas Protozoarias/metabolismo
15.
mSphere ; 8(5): e0022623, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37594288

RESUMEN

Multiple respiratory viruses, including influenza A virus (IAV), can be transmitted via expiratory aerosol particles, and aerosol pH was recently identified as a major factor influencing airborne virus infectivity. Indoors, small exhaled aerosols undergo rapid acidification to pH ~4. IAV is known to be sensitive to mildly acidic conditions encountered within host endosomes; however, it is unknown whether the same mechanisms could mediate viral inactivation within the more acidic aerosol micro-environment. Here, we identified that transient exposure to pH 4 caused IAV inactivation by a two-stage process, with an initial sharp decline in infectious titers mainly attributed to premature attainment of the post-fusion conformation of viral protein haemagglutinin (HA). Protein changes were observed by hydrogen-deuterium exchange coupled to mass spectrometry (HDX-MS) as early as 10 s post-exposure to acidic conditions. Our HDX-MS data are in agreement with other more labor-intensive structural analysis techniques, such as X-ray crystallography, highlighting the ease and usefulness of whole-virus HDX-MS for multiplexed protein analyses, even within enveloped viruses such as IAV. Additionally, virion integrity was partially but irreversibly affected by acidic conditions, with a progressive unfolding of the internal matrix protein 1 (M1) that aligned with a more gradual decline in viral infectivity with time. In contrast, no acid-mediated changes to the genome or lipid envelope were detected. Improved understanding of respiratory virus fate within exhaled aerosols constitutes a global public health priority, and information gained here could aid the development of novel strategies to control the airborne persistence of seasonal and/or pandemic influenza in the future. IMPORTANCE It is well established that COVID-19, influenza, and many other respiratory diseases can be transmitted by the inhalation of aerosolized viruses. Many studies have shown that the survival time of these airborne viruses is limited, but it remains an open question as to what drives their infectivity loss. Here, we address this question for influenza A virus by investigating structural protein changes incurred by the virus under conditions relevant to respiratory aerosol particles. From prior work, we know that expelled aerosols can become highly acidic due to equilibration with indoor room air, and our results indicate that two viral proteins are affected by these acidic conditions at multiple sites, leading to virus inactivation. Our findings suggest that the development of air treatments to quicken the speed of aerosol acidification would be a major strategy to control infectious bioburdens in the air.


Asunto(s)
Virus de la Influenza A , Gripe Humana , Humanos , Virus de la Influenza A/fisiología , Aerosoles y Gotitas Respiratorias , Concentración de Iones de Hidrógeno
16.
Nat Commun ; 13(1): 345, 2022 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-35039477

RESUMEN

Coenzyme A (CoA) is an essential molecule acting in metabolism, post-translational modification, and regulation of gene expression. While all organisms synthesize CoA, many, including humans, are unable to produce its precursor, pantothenate. Intriguingly, like most plants, fungi and bacteria, parasites of the coccidian subgroup of Apicomplexa, including the human pathogen Toxoplasma gondii, possess all the enzymes required for de novo synthesis of pantothenate. Here, the importance of CoA and pantothenate biosynthesis for the acute and chronic stages of T. gondii infection is dissected through genetic, biochemical and metabolomic approaches, revealing that CoA synthesis is essential for T. gondii tachyzoites, due to the parasite's inability to salvage CoA or intermediates of the pathway. In contrast, pantothenate synthesis is only partially active in T. gondii tachyzoites, making the parasite reliant on its uptake. However, pantothenate synthesis is crucial for the establishment of chronic infection, offering a promising target for intervention against the persistent stage of T. gondii.


Asunto(s)
Ácido Pantoténico/biosíntesis , Parásitos/patogenicidad , Infección Persistente/parasitología , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología , Animales , Vías Biosintéticas , Diferenciación Celular , Membrana Celular/metabolismo , Coenzima A/biosíntesis , Coenzima A/química , Coenzima A/metabolismo , Citoplasma/metabolismo , Femenino , Estadios del Ciclo de Vida , Ratones , Ácido Pantoténico/química , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Multimerización de Proteína , Toxoplasma/crecimiento & desarrollo
17.
Nat Microbiol ; 7(11): 1777-1790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36109645

RESUMEN

Members of Apicomplexa are defined by apical cytoskeletal structures and secretory organelles, tailored for motility, invasion and egress. Gliding is powered by actomyosin-dependent rearward translocation of apically secreted transmembrane adhesins. In the human parasite Toxoplasma gondii, the conoid, composed of tubulin fibres and preconoidal rings (PCRs), is a dynamic organelle of undefined function. Here, using ultrastructure expansion microscopy, we established that PCRs serve as a hub for glideosome components including Formin1. We also identified components of the PCRs conserved in Apicomplexa, Pcr4 and Pcr5, that contain B-box zinc-finger domains, assemble in heterodimer and are essential for the formation of the structure. The fitness conferring Pcr6 tethers the PCRs to the cone of tubulin fibres. F-actin produced by Formin1 is used by Myosin H to generate the force for conoid extrusion which directs the flux of F-actin to the pellicular space, serving as gatekeeper to control parasite motility.


Asunto(s)
Actinas , Apicomplexa , Toxoplasma , Humanos , Citoesqueleto , Proteínas Protozoarias/genética , Toxoplasma/genética , Tubulina (Proteína)
18.
Nat Struct Mol Biol ; 29(3): 218-228, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35256802

RESUMEN

Phosphatidylinositol 3-kinase type 2α (PI3KC2α) is an essential member of the structurally unresolved class II PI3K family with crucial functions in lipid signaling, endocytosis, angiogenesis, viral replication, platelet formation and a role in mitosis. The molecular basis of these activities of PI3KC2α is poorly understood. Here, we report high-resolution crystal structures as well as a 4.4-Å cryogenic-electron microscopic (cryo-EM) structure of PI3KC2α in active and inactive conformations. We unravel a coincident mechanism of lipid-induced activation of PI3KC2α at membranes that involves large-scale repositioning of its Ras-binding and lipid-binding distal Phox-homology and C-C2 domains, and can serve as a model for the entire class II PI3K family. Moreover, we describe a PI3KC2α-specific helical bundle domain that underlies its scaffolding function at the mitotic spindle. Our results advance our understanding of PI3K biology and pave the way for the development of specific inhibitors of class II PI3K function with wide applications in biomedicine.


Asunto(s)
Fosfatidilinositol 3-Quinasa , Fosfatidilinositol 3-Quinasas , Endocitosis , Lípidos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal
19.
Elife ; 102021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34524082

RESUMEN

The SUV39 class of methyltransferase enzymes deposits histone H3 lysine 9 di- and trimethylation (H3K9me2/3), the hallmark of constitutive heterochromatin. How these enzymes are regulated to mark specific genomic regions as heterochromatic is poorly understood. Clr4 is the sole H3K9me2/3 methyltransferase in the fission yeast Schizosaccharomyces pombe, and recent evidence suggests that ubiquitination of lysine 14 on histone H3 (H3K14ub) plays a key role in H3K9 methylation. However, the molecular mechanism of this regulation and its role in heterochromatin formation remain to be determined. Our structure-function approach shows that the H3K14ub substrate binds specifically and tightly to the catalytic domain of Clr4, and thereby stimulates the enzyme by over 250-fold. Mutations that disrupt this mechanism lead to a loss of H3K9me2/3 and abolish heterochromatin silencing similar to clr4 deletion. Comparison with mammalian SET domain proteins suggests that the Clr4 SET domain harbors a conserved sensor for H3K14ub, which mediates licensing of heterochromatin formation.


Asunto(s)
Proteínas de Ciclo Celular , Heterocromatina , Código de Histonas/genética , N-Metiltransferasa de Histona-Lisina , Histonas , Proteínas de Schizosaccharomyces pombe , Dominio Catalítico/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN/genética , Heterocromatina/química , Heterocromatina/genética , Heterocromatina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Histonas/química , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Ubiquitinación/genética
20.
Sci Adv ; 7(35)2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34452907

RESUMEN

The class IB phosphoinositide 3-kinase (PI3K), PI3Kγ, is a master regulator of immune cell function and a promising drug target for both cancer and inflammatory diseases. Critical to PI3Kγ function is the association of the p110γ catalytic subunit to either a p101 or p84 regulatory subunit, which mediates activation by G protein-coupled receptors. Here, we report the cryo-electron microscopy structure of a heterodimeric PI3Kγ complex, p110γ-p101. This structure reveals a unique assembly of catalytic and regulatory subunits that is distinct from other class I PI3K complexes. p101 mediates activation through its Gßγ-binding domain, recruiting the heterodimer to the membrane and allowing for engagement of a secondary Gßγ-binding site in p110γ. Mutations at the p110γ-p101 and p110γ-adaptor binding domain interfaces enhanced Gßγ activation. A nanobody that specifically binds to the p101-Gßγ interface blocks activation, providing a novel tool to study and target p110γ-p101-specific signaling events in vivo.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda