Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Neurol Sci ; 45(11): 5241-5251, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38877206

RESUMEN

INTRODUCTION: Whereas (GCC)-repeats are overrepresented in genic regions, and mutation hotspots, they are largely unexplored with regard to their link with natural selection. Across numerous primate species and tissues, SMAD9 (SMAD Family Member 9) reaches highest level of expression in the human brain. This gene contains a (GCC)-repeat in the interval between + 1 and + 60 of the transcription start site, which is in the high-ranking (GCC)-repeats with respect to length. METHODS: Here we sequenced this (GCC)-repeat in 396 Iranian individuals, consisting of late-onset neurocognitive disorder (NCD) (N = 181) and controls (N = 215). RESULTS: We detected two predominantly abundant alleles of 7 and 9 repeats, forming 96.2% of the allele pool. The (GCC)7/(GCC)9 ratio was in the reverse order in the NCD group versus controls (p = 0.005), resulting from excess of (GCC)7 in the NCD group (p = 0.003) and (GCC)9 in the controls (p = 0.01). Five genotypes, predominantly consisting of (GCC)7 and lacking (GCC)9 were detected in the NCD group only (p = 0.008). The patients harboring those genotypes received the diagnoses of Alzheimer's disease (AD) and vascular dementia (VD). Five genotypes consisting of (GCC)9 and lacking (GCC)7 were detected in the control group only (p = 0.002). The group-specific genotypes formed approximately 4% of the genotype pool in the human samples studied. CONCLUSION: We propose natural selection and a novel locus for late-onset AD and VD at the SMAD9 (GCC)-repeat in humans.


Asunto(s)
Selección Genética , Humanos , Masculino , Femenino , Anciano , Trastornos Neurocognitivos/genética , Irán , Persona de Mediana Edad , Enfermedades de Inicio Tardío/genética , Anciano de 80 o más Años , Genotipo
2.
Biol Direct ; 19(1): 70, 2024 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-39169390

RESUMEN

BACKGROUND: The recombination landscape and subsequent natural selection have vast consequences forevolution and speciation. However, most of the crossover and recombination hotspots are yet to be discovered. We previously reported the relevance of C and G trinucleotide two-repeat units (CG-TTUs) in crossovers and recombination. METHODS: On a genome-wide scale, here we mapped all combinations of A and T trinucleotide two-repeat units (AT-TTUs) in human, consisting of AATAAT, ATAATA, ATTATT, TTATTA, TATTAT, and TAATAA. We also compared a number of the colonies formed by the AT-TTUs (distance between consecutive AT-TTUs < 500 bp) in several other primates and mouse. RESULTS: We found that the majority of the AT-TTUs (> 96%) resided in approximately 1.4 million colonies, spread throughout the human genome. In comparison to the CG-TTU colonies, the AT-TTU colonies were significantly more abundant and larger in size. Pure units and overlapping units of the pure units were readily detectable in the same colonies, signifying that the units were the sites of unequal crossover. We discovered dynamic sharedness of several of the colonies across the primate species studied, which mainly reached maximum complexity and size in human. CONCLUSIONS: We report novel crossover and recombination hotspots of the finest molecular resolution, massively spread and shared across the genomes of human and several other primates. With respect to crossovers and recombination, these genomes are far more dynamic than previously envisioned.


Asunto(s)
Intercambio Genético , Primates , Recombinación Genética , Animales , Humanos , Primates/genética , Genoma , Genoma Humano , Ratones
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda