Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Cell Mol Neurobiol ; 43(6): 2963-2974, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37084144

RESUMEN

The morphogenesis of the mammalian retina depends on the precise control of gene expression during development. Small non-coding RNAs, including microRNAs play profound roles in various physiological and pathological processes via gene expression regulation. A systematic analysis of the expression profile of small non-coding RNAs in developing Wistar rat retinas (postnatally day 5 (P5), P7, P10, P15 and P21) was executed using IonTorrent PGM next-generation sequencing technique to reveal the crucial players in the early postnatal retinogenesis. Our analysis reveals extensive regulatory potential of microRNAs during retinal development. We found a group of microRNAs that show constant high abundance (miR-19, miR-101; miR-181, miR-183, miR-124 and let-7) during the development process. Others are present only in the early stages (miR-20a, miR-206, miR-133, miR-466, miR-1247, miR-3582), or at later stages (miR-29, miR-96, miR-125, miR-344 or miR-664). Further miRNAs were detected which are differentially expressed in time. Finally, pathway enrichment analysis has revealed 850 predicted target genes that mainly participate in lipid-, amino acid- and glycan metabolisms in the examined time-period (P5-P21). P5-P7 transition revealed the importance of miRNAs in glutamatergic synapse and gap junction pathways. Significantly downregulated miRNAs rno-miR-30c1 and 2, rno-miR-205 and rno-miR-503 were detected to target Prkx (ENSRNOG00000003696), Adcy6 (ENSRNOG00000011587), Gnai3 (ENSRNOG00000019465) and Gja1 (ENSRNOG00000000805) genes. The dataset described here will be a valuable resource for clarifying new regulatory mechanisms for retinal development and will greatly contribute to our understanding of the divergence and function of microRNAs.


Asunto(s)
MicroARNs , Ratas , Animales , Ratas Wistar , MicroARNs/genética , MicroARNs/metabolismo , Regulación de la Expresión Génica , Retina/metabolismo , Perfilación de la Expresión Génica , Mamíferos/genética , Mamíferos/metabolismo
2.
Neurochem Res ; 48(11): 3430-3446, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37466802

RESUMEN

The degenerative retinal disorders characterized by progressive cell death and exacerbating inflammation lead ultimately to blindness. The ubiquitous neuropeptide, PACAP38 is a promising therapeutic agent as its proliferative potential and suppressive effect on microglia might enable cell replacement and attenuate inflammation, respectively. Our previous finding that PACAP38 caused a marked increase of the amacrine cells in the adult (1-year-old) mouse retina, served as a rationale of the current study. We aimed to determine the proliferating elements and the inflammatory status of the PACAP38-treated retina. Three months old mice were intravitreally injected with 100 pmol PACAP38 at 3 months intervals (3X). Retinas of 1-year-old animals were dissected and effects on cell proliferation, and expression of inflammatory regulators were analyzed. Interestingly, both mitogenic and anti-mitogenic actions were detected after PACAP38-treatment. Further analysis of the mitogenic effect revealed that proliferating cells include microglia, endothelial cells, and neurons of the ganglion cell layer but not amacrine cells. Furthermore, PACAP38 stimulated retinal microglia to polarize dominantly into M2-phenotype but also might cause subsequent angiogenesis. According to our results, PACAP38 might dampen pro-inflammatory responses and help tissue repair by reprogramming microglia into an M2 phenotype, nonetheless, with angiogenesis as a warning side effect.


Asunto(s)
Microglía , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Ratones , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Adenilil Ciclasas , Células Endoteliales , Retina
3.
Int J Mol Sci ; 24(10)2023 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-37240082

RESUMEN

An imbalance of homeostasis in the retina leads to neuron loss and this eventually results in a deterioration of vision. If the stress threshold is exceeded, different protective/survival mechanisms are activated. Numerous key molecular actors contribute to prevalent metabolically induced retinal diseases-the three major challenges are age-related alterations, diabetic retinopathy and glaucoma. These diseases have complex dysregulation of glucose-, lipid-, amino acid or purine metabolism. In this review, we summarize current knowledge on possible ways of preventing or circumventing retinal degeneration by available methods. We intend to provide a unified background, common prevention and treatment rationale for these disorders and identify the mechanisms through which these actions protect the retina. We suggest a role for herbal medicines, internal neuroprotective substances and synthetic drugs targeting four processes: parainflammation and/or glial cell activation, ischemia and related reactive oxygen species and vascular endothelial growth factor accumulation, apoptosis and/or autophagy of nerve cells and an elevation of ocular perfusion pressure and/or intraocular pressure. We conclude that in order to achieve substantial preventive or therapeutic effects, at least two of the mentioned pathways should be targeted synergistically. A repositioning of some drugs is considered to use them for the cure of the other related conditions.


Asunto(s)
Retinopatía Diabética , Glaucoma , Degeneración Retiniana , Humanos , Degeneración Retiniana/etiología , Degeneración Retiniana/prevención & control , Degeneración Retiniana/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Retina/metabolismo , Retinopatía Diabética/metabolismo , Glaucoma/metabolismo
4.
Cells Tissues Organs ; 210(2): 135-150, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34218223

RESUMEN

Imbalance of homeostasis causes permanent changes in the body with time. The central nervous system is especially prone to these changes since it possesses limited regenerative capacity. In the retina, neurons are damaged during the aging process, and this eventually leads to deterioration of vision. In our 2-year-long study, we examined genetically closely related rat individuals to disclose the hidden retinal causes of age-associated visual dysfunction. Morphometric analysis showed significant reduction of the retina thickness with aging, particularly that of the inner plexiform layer. To reveal changes between the age groups, we used immunohistochemistry against vesicular glutamate transporter 1 protein for photoreceptor and bipolar cell terminals, Brn3a for ganglion cells, calbindin 28 kDa for horizontal cells, parvalbumin for AII amacrines, protein kinase Cα for rod bipolar cells, tyrosine hydroxylase for dopaminergic cells, glial fibrillary acidic protein for glial cells, and peanut-agglutinin labeling for cones. The most significant decrease was observed in the density of photoreceptor and the ganglion cells in the aging process. By using immunocytochemistry and western blot technique, we observed that calbindin and vesicular glutamate transporter 1 protein staining do not change much with aging; tyrosine hydroxylase, parvalbumin and calretinin showed the highest immunoreactivity during the midlife period. Most interestingly, the level of glial fibrillary acidic protein also changes similarly to the previously named markers. Our results provide further evidence that protein content is modified at least in some cell populations of the rat retina, and the number of retinal cells declined with aging. We conclude that senescence alone may cause structural and functional damage in the retinal tissue.


Asunto(s)
Retina , Tirosina 3-Monooxigenasa , Animales , Neuroglía , Neuronas , Ratas , Ratas Wistar
5.
Int J Mol Sci ; 22(5)2021 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-33806574

RESUMEN

It is well established that miR-9 contributes to retinal neurogenesis. However, little is known about its presence and effects in the postnatal period. To expand our knowledge, miRNA-small RNA sequencing and in situ hybridization supported by RT-qPCR measurement were carried out. Mir-9 expression showed two peaks in the first three postnatal weeks in Wistar rats. The first peak was detected at postnatal Day 3 (P3) and the second at P10, then the expression gradually decreased until P21. Furthermore, we performed in silico prediction and established that miR-9 targets OneCut2 or synaptotagmin-17. Another two microRNAs (mir-135, mir-218) were found from databases which also target these proteins. They showed a similar tendency to mir-9; their lowest expression was at P7 and afterwards, they showed increase. We revealed that miR-9 is localized mainly in the inner retina. Labeling was observed in ganglion and amacrine cells. Additionally, horizontal cells were also marked. By dual miRNA-in situ hybridization/immunocytochemistry and qPCR, we revealed alterations in their temporal and spatial expression. Our results shed light on the significance of mir-9 regulation during the first three postnatal weeks in rat retina and suggest that miRNA could act on their targets in a stage-specific manner.


Asunto(s)
MicroARNs/metabolismo , Retina/metabolismo , Animales , Hibridación in Situ/métodos , Atención Posnatal , Ratas , Ratas Wistar , Células Ganglionares de la Retina/metabolismo , Factores de Transcripción/metabolismo
6.
Int J Mol Sci ; 22(13)2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-34209226

RESUMEN

As neurotransmitter, GABA is fundamental for physiological processes in the developing retina. Its synthesis enzymes are present during retinal development, although the molecular regulatory mechanisms behind the changes in expression are not entirely understood. In this study, we revealed the expression patterns of glutamic acid decarboxylase 67(GAD67) and its coding gene (GAD1) and its potential miRNA-dependent regulation during the first three postnatal weeks in rat retina. To gain insight into the molecular mechanisms, miRNA-sequencing supported by RT-qPCR and in situ hybridization were carried out. GAD1 expression shows an increasing tendency, peaking at P15. From the in silico-predicted GAD1 targeting miRNAs, only miR-23 showed similar expression patterns, which is a known regulator of GAD1 expression. For further investigation, we made an in situ hybridization investigation where both GAD67 and miR-23 also showed lower expression before P7, with the intensity of expression gradually increasing until P21. Horizontal cells at P7, amacrine cells at P15 and P21, and some cells in the ganglion cell layer at several time points were double labelled with miR-23 and GAD67. Our results highlight the complexity of these regulatory networks and the possible role of miR-23 in the regulation of GABA synthesizing enzyme expression during postnatal retina development.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Glutamato Descarboxilasa/biosíntesis , MicroARNs/biosíntesis , Retina/crecimiento & desarrollo , Animales , Glutamato Descarboxilasa/genética , MicroARNs/genética , Ratas , Ratas Wistar
7.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-33466261

RESUMEN

Retinal aging is the result of accumulating molecular and cellular damage with a manifest decline in visual functions. Somatostatin (SST) and pituitary adenylate cyclase-activating polypeptide (PACAP) have been implicated in neuroprotection through regulating disparate aspects of neuronal activity (survival, proliferation and renewal). The aim of the present study was to validate a transgenic model for SST-expressing amacrine cells and to investigate the chronic effect of PACAP on the aging of SSTergic and dopaminergic cells of the retina. SST-tdTomato transgenic mice that were 6, 12 and 18 months old were treated intravitreally with 100 pmol of PACAP every 3 months. The density of SST and dopaminergic amacrine cells was assessed in whole-mounted retinas. Cells displaying the transgenic red fluorescence were identified as SST-immunopositive amacrine cells. By comparing the three age groups. PACAP treatment was shown to induce a moderate elevation of cell densities in both the SST and dopaminergic cell populations in the 12- and 18-month-old animals. By contrast, the control untreated and saline-treated retinas showed a minor cell loss. In conclusion, we report a reliable transgenic model for examining SSTergic amacrine cells. The fundamental novelty of this study is that PACAP could increase the cell density in matured retinal tissue, anticipating new therapeutic potential in age-related pathological processes.


Asunto(s)
Senescencia Celular/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Retina/efectos de los fármacos , Animales , Recuento de Células/métodos , Neuronas Dopaminérgicas/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos
8.
World J Microbiol Biotechnol ; 36(11): 160, 2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-32989522

RESUMEN

Emerging and re-emerging microbial pathogens, together with their rapid evolution and adaptation against antibiotics, highlight the importance not only of screening for new antimicrobial agents, but also for deepening knowledge about existing antibiotics. Primycin is a large 36-membered non-polyene macrolide lactone exclusively produced by Saccharomonospora azurea. This study provides information about strain dependent primycin production ability in conjunction with the structural, functional and comparative genomic examinations. Comparison of high- and low-primycin producer strains, transcriptomic analysis identified a total of 686 differentially expressed genes (DEGs), classified into diverse Cluster of Orthologous Groups. Among them, genes related to fatty acid synthesis, self-resistance, regulation of secondary metabolism and agmatinase encoding gene responsible for catalyze conversion between guanidino/amino forms of primycin were discussed. Based on in silico data mining methods, we were able to identify DEGs whose altered expression provide a good starting point for the optimization of fermentation processes, in order to perform targeted strain improvement and rational drug design.


Asunto(s)
Actinobacteria/metabolismo , Macrólidos/metabolismo , Actinobacteria/genética , Antibacterianos/farmacología , Medios de Cultivo/química , Perfilación de la Expresión Génica , Regulación Bacteriana de la Expresión Génica , Genómica , Familia de Multigenes , ARN Bacteriano/genética , ARN Bacteriano/aislamiento & purificación
9.
Histochem Cell Biol ; 150(5): 557-566, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30088096

RESUMEN

Nowadays, increasing number of microRNAs are found to have crucial roles in various physiological processes through gene expression regulation via RNA silencing as a result of base pairing with complementary mRNA sequences. To reveal the spatial distribution of microRNA expression in tissues, in situ hybridisation is the only method developed to date. This work aims to provide a novel approach to obtain information on the possible involvement of microRNA-s in regulatory processes under experimental conditions by enhancing fluorescent detection of microRNA labelling. Developing Wistar rats were used as a model system to analyse retinal microRNA expression in the first 3 postnatal weeks. Using cryosections, the crucial elements of optimal labels were (1) the concentration and duration of proteinase K treatment, (2) hybridisation temperature of microRNA probes and (3) temperature of stringency washes. Further improvements made possible to combine our in situ hybridisation protocol with double-label immunofluorescence allowing for the simultaneous detection of microRNA-s with high sensitivity and a neuronal cell marker and/or a synaptic marker protein. Thus, the regulatory microRNA-s can be localised in an identified cell type along with its potential target protein. We believe that our protocol can be easily adapted for a variety of tissues of different origins, developmental stages and experimental conditions.


Asunto(s)
Hibridación Fluorescente in Situ , MicroARNs/análisis , Proteínas/análisis , Retina/química , Retina/citología , Animales , Biomarcadores/análisis , Inmunohistoquímica , MicroARNs/metabolismo , Neuronas/química , Neuronas/citología , Neuronas/metabolismo , Proteínas/metabolismo , Ratas , Ratas Wistar , Retina/metabolismo
10.
Acta Biol Hung ; 67(4): 424-430, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28000508

RESUMEN

Saccharomonospora azurea SZMC 14600 is a member of the family Pseudonocardiaceae exclusively used for industrial scale production of primycin a large 36-membered non-polyene macrolide lactone antibiotic belonging to the polyketide class of natural products. Even though maximum antibiotic yield has been achieved by empirically optimized two-step fermentation process, little is known about the molecular components and mechanisms underlying the efficient antibiotic production. In order to identify differentially expressed proteins (DEPs) between the pre- and main-fermentation stages of primycin, comparative 2D-PAGE experiments were performed. In total, 98 DEP spots were reproducibly detected, out of which four spots were excised from gels, and identified through MALDI-TOF/TOF mass spectrometry. Peptide mass fingerprint analysis revealed peptide matches to HicB antitoxin for the HicAB toxin-antitoxin system (EHK86651), to a nucleoside diphosphate kinase regulator ((Ndk; EHK81899) and two other proteins with unknown function (EHK88946 and EHK86777).


Asunto(s)
Actinomycetales/metabolismo , Fermentación , Macrólidos/metabolismo , Proteoma/metabolismo , Electroforesis en Gel Bidimensional , Proteómica , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
11.
Cells ; 12(23)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38067127

RESUMEN

Diabetes mellitus affects carbohydrate homeostasis but also influences fat and protein metabolism. Due to ophthalmic complications, it is a leading cause of blindness worldwide. The molecular pathology reveals that nuclear factor kappa B (NFκB) has a central role in the progression of diabetic retinopathy, sharing this signaling pathway with another major retinal disorder, glaucoma. Therefore, new therapeutic approaches can be elaborated to decelerate the ever-emerging "epidemics" of diabetic retinopathy and glaucoma targeting this critical node. In our review, we emphasize the role of an improvement of lifestyle in its prevention as well as the use of phytomedicals associated with evidence-based protocols. A balanced personalized therapy requires an integrative approach to be more successful for prevention and early treatment.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Glaucoma , Humanos , Retinopatía Diabética/tratamiento farmacológico , Retina , Ceguera/complicaciones , Ceguera/prevención & control , Glaucoma/complicaciones
12.
J Bacteriol ; 194(5): 1263, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22328759

RESUMEN

Although certain rare actinomycetes have been recognized as prolific sources of bioactive natural products, their potential for producing biologically active metabolites still remains unexplored. With the aim of gaining global insights into the genetic background and the metabolic capability of Saccharomonospora azurea SZMC 14600, whole-genome sequencing was performed.


Asunto(s)
Actinomycetales/genética , Actinomycetales/metabolismo , Antibacterianos/biosíntesis , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
13.
Front Pharmacol ; 12: 808315, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35095518

RESUMEN

The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.

14.
Biomed Pharmacother ; 134: 111105, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33338750

RESUMEN

Diabetes mellitus is a common metabolic disease leading to hyperglycemia due to insufficient pancreatic insulin production or effect. Amine oxidase copper containing 3 (AOC3) is an enzyme that belongs to the semicarbazide-sensitive amine oxidase family, which may be a novel therapeutic target to treat diabetic complications. We aimed to explore the effects of AOC3 inhibition and to test the actions of our novel AOC3 inhibitor multi-target drug candidate, SZV 1287, compared to a selective reference compound, LJP 1207, in an 8-week long insulin-controlled streptozotocin (STZ)-induced (60 mg/kg i.p.) rat diabetes model. Both AOC3 inhibitors (20 mg/kg, daily s.c. injections) were protective against STZ-induced pancreatic beta cell damage determined by insulin immunohistochemistry and radioimmunoassay, neuropathic cold hypersensitivity measured by paw withdrawal latency decrease from 0 °C water, and retinal dysfunction detected by electroretinography. SZV 1287 showed greater inhibitory effects on beta cell damage, and reduced retinal apoptosis shown by histochemistry. Mechanical hypersensitivity measured by aesthesiometry, cardiac dysfunction and nitrosative stress determined by echocardiography and immunohistochemistry/Western blot, respectively, serum Na+, K+, fructosamine, and urine microalbumin, creatinine, total protein/creatinine ratio alterations did not develop in response to diabetes. None of these parameters were influenced by the treatments except for SZV 1287 reducing serum fructosamine and LJP 1207 increasing urine creatinine. We provide the first evidence for protective effects of AOC3 inhibition on STZ-induced pancreatic beta cell damage, neuropathic cold hypersensitivity and diabetic retinal dysfunction. Long-term treatment with our novel multi-target analgesic candidate, SZV 1287, is safe and effective also under diabetic conditions.


Asunto(s)
Complicaciones de la Diabetes/tratamiento farmacológico , Diabetes Mellitus Experimental/tratamiento farmacológico , Inhibidores de la Monoaminooxidasa/farmacología , Oxazoles/farmacología , Oximas/farmacología , Amina Oxidasa (conteniendo Cobre)/metabolismo , Analgésicos/farmacología , Animales , Moléculas de Adhesión Celular/metabolismo , Complicaciones de la Diabetes/prevención & control , Diabetes Mellitus Experimental/prevención & control , Nefropatías Diabéticas/tratamiento farmacológico , Retinopatía Diabética/tratamiento farmacológico , Humanos , Hidrazinas/farmacología , Insulina/metabolismo , Células Secretoras de Insulina , Masculino , Ratas , Ratas Sprague-Dawley , Estreptozocina/efectos adversos
15.
Inflamm Res ; 59(2): 159-64, 2010 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19757086

RESUMEN

OBJECTIVE: We investigated the association between systemic lupus erythematosus (SLE) and polymorphisms of interleukin-23 receptor (IL23R) gene, which was recently found to be associated with autoimmune diseases, including Crohn's disease, rheumatoid arthritis, psoriasis and ankylosing spondylitis. SUBJECTS: We analysed 383 SLE patients and 253 controls for rs11805303, rs10889677, rs1004819, rs2201841, rs11209032, 11209026, rs10489629, rs7517847 and rs7530511 variants. METHODS: The analysis was carried out using PCR-RFLP methods. Logistic regression analysis was used to compare the genotype distributions of the polymorphisms and haplotypes between the SLE patients and healthy controls. RESULTS: We observed no significant difference of the examined variants between the patient and control groups. CONCLUSIONS: Our results suggest that neither single nucleotide variants nor haplotypes of IL23R indicate susceptibility to developing SLE in the Hungarian population.


Asunto(s)
Lupus Eritematoso Sistémico/etnología , Lupus Eritematoso Sistémico/genética , Polimorfismo de Nucleótido Simple/genética , Receptores de Interleucina/genética , Adulto , Alelos , Estudios de Casos y Controles , Frecuencia de los Genes/genética , Predisposición Genética a la Enfermedad/genética , Genotipo , Haplotipos/genética , Humanos , Hungría , Persona de Mediana Edad
16.
Neuroscience ; 385: 59-66, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29906550

RESUMEN

PACAP1-38, a ubiquitous and multifunctional regulator has been in the focus of neurotoxicity research due to its impressive neuroprotective potential. Although the literature extensively demonstrated its repressive effect on the apoptotic machinery in neurodegenerative models, there is a striking absence of analysis on its role in normal development. We performed quantitative analyses on caspase activity in developing retina upon 100, 50, 25 or 1 pmol intravitreal PACAP1-38 injection from postnatal day 1 (P1) through P7 in Wistar rats. Retinas were harvested at 6, 12, 18, 24 or 48 h post-injection. Apoptotic activity was revealed using fluorescent caspase 3/7 enzyme assay, western blots and TUNEL assay. Unexpectedly, we found that 100 pmol PACAP1-38 increased the activity of caspase 3/7 at P1 and P5 whereas it had no effect at P7. At P3, as a biphasic effect, PACAP1-38 repressed active caspase 3/7 at 18 h post-injection while increased their activity in 24 h post-injection. Amounts, smaller than 100 pmol, could not inhibit apoptosis whereas 50, 25 or 1 pmol PACAP1-38 could evoke significant elevation in caspase 3/7 activity. TUNEL-positive cells appeared in the proximal part of inner nuclear as well as ganglion cell layers in response to PACAP1-38 treatment. The fundamental novelty of these results is that PACAP1-38 induces apoptosis during early postnatal retinogenesis. The dose as well as stage-dependent response suggests that PACAP1-38 has a Janus face in apoptosis regulation. It not only inhibits development-related apoptosis, but as a long-term effect, facilitates it.


Asunto(s)
Apoptosis/efectos de los fármacos , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/farmacología , Retina/efectos de los fármacos , Animales , Caspasa 1/metabolismo , Inyecciones Intravítreas , Ratas , Ratas Wistar , Retina/crecimiento & desarrollo , Retina/metabolismo
17.
Neuroscience ; 348: 1-10, 2017 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-28215987

RESUMEN

Pituitary adenylate cyclase activating polypeptide (PACAP) is a neurotrophic and neuroprotective peptide. PACAP and its receptors are widely distributed in the retina. A number of reports provided evidence that PACAP is neuroprotective in retinal degenerations. The current study compared retina cell type-specific differences in young (3-4months) and aged adults (14-16months), of wild-type (WT) mice and knock-out (KO) mice lacking endogenous PACAP production during the course of aging. Histological, immunocytochemical and Western blot examinations were performed. The staining for standard neurochemical markers (tyrosine hydroxylase for dopaminergic cells, calbindin 28 kDa for horizontal cells, protein kinase Cα for rod bipolar cells) of young adult PACAP KO retinas showed no substantial alterations compared to young adult WT retinas, except for the specific PACAP receptor (PAC1-R) staining. We could not detect PAC1-R immunoreactivity in bipolar and horizontal cells in young adult PACAP KO animals. Some other age-related changes were observed only in the PACAP KO mice only. These alterations included horizontal and rod bipolar cell dendritic sprouting into the photoreceptor layer and decreased ganglion cell number. Also, Müller glial cells showed elevated GFAP expression compared to the aging WT retinas. Furthermore, Western blot analyses revealed significant differences between the phosphorylation state of ERK1/2 and JNK in KO mice, indicating alterations in the MAPK signaling pathway. These results support the conclusion that endogenous PACAP contributes to protection against aging of the nervous system.


Asunto(s)
Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Retina/metabolismo , Degeneración Retiniana/metabolismo , Animales , Calbindinas/metabolismo , Ratones , Ratones Noqueados , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Proteína Quinasa C-alfa/metabolismo , Receptores del Polipéptido Activador de la Adenilato-Ciclasa Hipofisaria/metabolismo , Retina/patología , Degeneración Retiniana/genética , Degeneración Retiniana/patología , Tirosina 3-Monooxigenasa/metabolismo
18.
Pathol Oncol Res ; 17(1): 39-44, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20490738

RESUMEN

Apolipoprotein A5 (ApoA5) gene and its protein product play a central role in the complex regulation of circulating triglyceride levels in humans. Naturally occurring variants of the apolipoprotein A5 gene have been associated with increased triglyceride levels and have been found to confer risk for cardiovascular diseases. In our study, four polymorphisms, the T-1131C, IVS3+G476A, T1259C, and C56G alleles of APOA5 were analyzed in a total of 436 patients by polymerase chain reaction-restriction fragment length polymorphism methods. The randomly selected patients were classified into four quartile (q) groups based on triglyceride levels (q1: TG<1.31 mmol/l; q2: 1.31-2.90 mmol/l; q3: 2.91-4.85 mmol/l; q4: TG>4.85 mmol/l). We observed significant stepwise increasing association between the four APOA5 minor allele carrier frequencies and plasma triglyceride quartiles: -1131C (q1: 4.44%; q2: 8.95%; q3: 12.9%; q4: 20.6%), IVS3 + 476A (q1: 4.44%; q2: 5.79%; q3: 11.1%; q4: 19.7%), 1259C (q1: 4.44%; q2: 6.84%; q3: 11.1%; q4: 20.6%) and 56G (q1: 5.64%; q2: 6.31%; q3: 11.16%; q4: 11.9%). The serum total cholesterol and high density lipoprotein-cholesterol levels also showed allele-dependent differences in the quartiles. The findings presented here revealed a special arrangement of APOA5 minor alleles in patients with different serum triglyceride ranges in Hungarians.


Asunto(s)
Apolipoproteínas A/genética , Frecuencia de los Genes , Predisposición Genética a la Enfermedad/genética , Hipertrigliceridemia/genética , Triglicéridos/sangre , Adulto , Anciano , Apolipoproteína A-V , Femenino , Humanos , Hungría , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Distribución Aleatoria , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triglicéridos/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda