Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
ACS Chem Biol ; 18(5): 1158-1167, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-37145869

RESUMEN

Peptides represent an increasingly important class of pharmaceutical products. During the last decade or so, acylation with fatty acids has demonstrated considerable success in prolonging the circulating half-life of therapeutic peptides by exploiting the ability of fatty acids to reversibly bind to human serum albumin (HSA), thus significantly impacting their pharmacological profiles. Employing methyl-13C-labeled oleic acid or palmitic acid as probe molecules and exploiting HSA mutants designed to probe fatty acid binding, the signals in two-dimensional (2D) nuclear magnetic resonance (NMR) spectra corresponding to high-affinity fatty acid binding sites in HSA were assigned. Subsequently, using a set of selected acylated peptides, competitive displacement experiments by 2D NMR identified a primary fatty acid binding site in HSA utilized in acylated peptide binding. These results represent an important first step toward understanding the structural basis for acylated peptides binding to HSA.


Asunto(s)
Albúmina Sérica Humana , Albúmina Sérica , Humanos , Albúmina Sérica Humana/metabolismo , Albúmina Sérica/química , Albúmina Sérica/metabolismo , Sitios de Unión , Ácidos Grasos/metabolismo , Péptidos/metabolismo , Unión Proteica
2.
Mol Metab ; 62: 101522, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35671972

RESUMEN

OBJECTIVE: Ultra-rapid insulin formulations control postprandial hyperglycemia; however, inadequate understanding of injection site absorption mechanisms is limiting further advancement. We used photoacoustic imaging to investigate the injection site dynamics of dye-labeled insulin lispro in the Humalog® and Lyumjev® formulations using the murine ear cutaneous model and correlated it with results from unlabeled insulin lispro in pig subcutaneous injection model. METHODS: We employed dual-wavelength optical-resolution photoacoustic microscopy to study the absorption and diffusion of the near-infrared dye-labeled insulin lispro in the Humalog and Lyumjev formulations in mouse ears. We mathematically modeled the experimental data to calculate the absorption rate constants and diffusion coefficients. We studied the pharmacokinetics of the unlabeled insulin lispro in both the Humalog and Lyumjev formulations as well as a formulation lacking both the zinc and phenolic preservative in pigs. The association state of insulin lispro in each of the formulations was characterized using SV-AUC and NMR spectroscopy. RESULTS: Through experiments using murine and swine models, we show that the hexamer dissociation rate of insulin lispro is not the absorption rate-limiting step. We demonstrated that the excipients in the Lyumjev formulation produce local tissue expansion and speed both insulin diffusion and microvascular absorption. We also show that the diffusion of insulin lispro at the injection site drives its initial absorption; however, the rate at which the insulin lispro crosses the blood vessels is its overall absorption rate-limiting step. CONCLUSIONS: This study provides insights into injection site dynamics of insulin lispro and the impact of formulation excipients. It also demonstrates photoacoustic microscopy as a promising tool for studying protein therapeutics. The results from this study address critical questions around the subcutaneous behavior of insulin lispro and the formulation excipients, which could be useful to make faster and better controlled insulin formulations in the future.


Asunto(s)
Insulina de Acción Corta , Técnicas Fotoacústicas , Animales , Excipientes , Hipoglucemiantes/química , Insulina , Insulina Lispro , Ratones , Porcinos
3.
Mol Metab ; 44: 101121, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33220491

RESUMEN

OBJECTIVE: Members of the insulin/insulin-like growth factor (IGF) superfamily are well conserved across the evolutionary tree. We recently showed that four viruses in the Iridoviridae family possess genes that encode proteins highly homologous to human insulin/IGF-1. Using chemically synthesized single-chain (sc), i.e., IGF-1-like, forms of the viral insulin/IGF-1-like peptides (VILPs), we previously showed that they can stimulate human receptors. Because these peptides possess potential cleavage sites to form double chain (dc), i.e., more insulin-like, VILPs, in this study, we have characterized dc forms of VILPs for Grouper iridovirus (GIV), Singapore grouper iridovirus (SGIV) and Lymphocystis disease virus-1 (LCDV-1) for the first time. METHODS: The dcVILPs were chemically synthesized. Using murine fibroblast cell lines overexpressing insulin receptor (IR-A or IR-B) or IGF1R, we first determined the binding affinity of dcVILPs to the receptors and characterized post-receptor signaling. Further, we used C57BL/6J mice to study the effect of dcVILPs on lowering blood glucose. We designed a 3-h dcVILP in vivo infusion experiment to determine the glucose uptake in different tissues. RESULTS: GIV and SGIV dcVILPs bind to both isoforms of human insulin receptor (IR-A and IR-B) and to the IGF1R, and for the latter, show higher affinity than human insulin. These dcVILPs stimulate IR and IGF1R phosphorylation and post-receptor signaling in vitro and in vivo. Both GIV and SGIV dcVILPs stimulate glucose uptake in mice. In vivo infusion experiments revealed that while insulin (0.015 nmol/kg/min) and GIV dcVILP (0.75 nmol/kg/min) stimulated a comparable glucose uptake in heart and skeletal muscle and brown adipose tissue, GIV dcVILP stimulated 2-fold higher glucose uptake in white adipose tissue (WAT) compared to insulin. This was associated with increased Akt phosphorylation and glucose transporter type 4 (GLUT4) gene expression compared to insulin in WAT. CONCLUSIONS: Our results show that GIV and SGIV dcVILPs are active members of the insulin superfamily with unique characteristics. Elucidating the mechanism of tissue specificity for GIV dcVILP will help us to better understand insulin action, design new analogs that specifically target the tissues and provide new insights into their potential role in disease.


Asunto(s)
Tejido Adiposo Blanco/metabolismo , Insulina/genética , Insulina/metabolismo , Iridovirus/genética , Tejido Adiposo Pardo/metabolismo , Animales , Antígenos CD , Línea Celular , Glucosa/metabolismo , Humanos , Factor I del Crecimiento Similar a la Insulina/metabolismo , Insulinas/metabolismo , Iridoviridae/genética , Ratones , Ratones Endogámicos C57BL , Fosforilación , Receptor IGF Tipo 1/genética , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/metabolismo , Transducción de Señal
4.
Obesity (Silver Spring) ; 28(2): 303-314, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31903723

RESUMEN

OBJECTIVE: The continuous endothelium of skeletal muscle (SkM) capillaries regulates insulin's access to skeletal myocytes. Whether impaired transendothelial insulin transport (EIT) contributes to SkM insulin resistance (IR), however, is unknown. METHODS: Male and female C57/Bl6 mice were fed either chow or a high-fat diet for 16 weeks. Intravital microscopy was used to measure EIT in SkM capillaries, electron microscopy to assess endothelial ultrastructure, and glucose tracers to measure indices of glucose metabolism. RESULTS: Diet-induced obesity (DIO) male mice were found to have a ~15% reduction in EIT compared with lean mice. Impaired EIT was associated with a 45% reduction in endothelial vesicles. Despite impaired EIT, hyperinsulinemia sustained delivery of insulin to the interstitial space in DIO male mice. Even with sustained interstitial insulin delivery, DIO male mice still showed SkM IR indicating severe myocellular IR in this model. Interestingly, there was no difference in EIT, endothelial ultrastructure, or SkM insulin sensitivity between lean female mice and female mice fed a high-fat diet. CONCLUSIONS: These results suggest that, in male mice, obesity results in ultrastructural alterations to the capillary endothelium that delay EIT. Nonetheless, the myocyte appears to exceed the endothelium as a contributor to SkM IR in DIO male mice.


Asunto(s)
Capilares/fisiología , Endotelio Vascular/fisiopatología , Insulina/metabolismo , Músculo Esquelético/metabolismo , Obesidad/metabolismo , Animales , Masculino , Ratones , Ratones Obesos
5.
Diabetes ; 67(10): 1962-1975, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30002132

RESUMEN

Before insulin can stimulate glucose uptake in muscle, it must be delivered to skeletal muscle (SkM) through the microvasculature. Insulin delivery is determined by SkM perfusion and the rate of movement of insulin across the capillary endothelium. The endothelium therefore plays a central role in regulating insulin access to SkM. Nitric oxide (NO) is a key regulator of endothelial function and stimulates arterial vasodilation, which increases SkM perfusion and the capillary surface area available for insulin exchange. The effects of NO on transendothelial insulin efflux (TIE), however, are unknown. We hypothesized that acute reduction of endothelial NO would reduce TIE. However, intravital imaging of TIE in mice revealed that reduction of NO by l-NG-nitro-l-arginine methyl ester (l-NAME) enhanced the rate of TIE by ∼30% and increased total extravascular insulin delivery. This accelerated TIE was associated with more rapid insulin-stimulated glucose lowering. Sodium nitroprusside, an NO donor, had no effect on TIE in mice. The effects of l-NAME on TIE were not due to changes in blood pressure alone, as a direct-acting vasoconstrictor (phenylephrine) did not affect TIE. These results demonstrate that acute NO synthase inhibition increases the permeability of capillaries to insulin, leading to an increase in delivery of insulin to SkM.


Asunto(s)
Insulina/metabolismo , Óxido Nítrico Sintasa/metabolismo , Animales , Transporte Biológico/efectos de los fármacos , Presión Sanguínea/fisiología , Western Blotting , Glucosa/metabolismo , Masculino , Ratones Endogámicos C57BL , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/metabolismo , Migración Transendotelial y Transepitelial/efectos de los fármacos
6.
J Clin Invest ; 128(2): 699-714, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29309051

RESUMEN

Before insulin can stimulate myocytes to take up glucose, it must first move from the circulation to the interstitial space. The continuous endothelium of skeletal muscle (SkM) capillaries restricts insulin's access to myocytes. The mechanism by which insulin crosses this continuous endothelium is critical to understand insulin action and insulin resistance; however, methodological obstacles have limited understanding of endothelial insulin transport in vivo. Here, we present an intravital microscopy technique to measure the rate of insulin efflux across the endothelium of SkM capillaries. This method involves development of a fully bioactive, fluorescent insulin probe, a gastrocnemius preparation for intravital microscopy, an automated vascular segmentation algorithm, and the use of mathematical models to estimate endothelial transport parameters. We combined direct visualization of insulin efflux from SkM capillaries with modeling of insulin efflux kinetics to identify fluid-phase transport as the major mode of transendothelial insulin efflux in mice. Model-independent experiments demonstrating that insulin movement is neither saturable nor affected by insulin receptor antagonism supported this result. Our finding that insulin enters the SkM interstitium by fluid-phase transport may have implications in the pathophysiology of SkM insulin resistance as well as in the treatment of diabetes with various insulin analogs.


Asunto(s)
Capilares/metabolismo , Insulina/metabolismo , Músculo Esquelético/irrigación sanguínea , Animales , Antígenos CD/metabolismo , Transporte Biológico , Diabetes Mellitus/terapia , Glucosa/metabolismo , Técnica de Clampeo de la Glucosa , Humanos , Hiperinsulinismo , Procesamiento de Imagen Asistido por Computador , Microscopía Intravital , Cinética , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Teóricos , Unión Proteica , Receptor de Insulina/metabolismo , Rodaminas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda