Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Am J Transplant ; 16(1): 99-110, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26249758

RESUMEN

Acute cellular rejection (ACR) is the adverse response of the recipient's immune system against the allogeneic graft. Using human surveillance endomyocardial biopsies (EMBs) manifesting ACR and murine allogeneic grafts, we profiled implicated microRNAs (miRs) and mRNAs. MiR profiling showed that miR-21, -142-3p, -142-5p, -146a, -146b, -155, -222, -223, and -494 increased during ACR in humans and mice, whereas miR-149-5p decreased. mRNA profiling revealed 70 common differentially regulated transcripts, all involved in immune signaling and immune-related diseases. Interestingly, 33 of 70 transcripts function downstream of IL-6 and its transcription factor spleen focus forming virus proviral integration oncogene (SPI1), an established target of miR-155, the most upregulated miR in human EMBs manifesting rejection. In a mouse model of cardiac transplantation, miR-155 absence and pharmacological inhibition attenuated ACR, demonstrating the causal involvement and therapeutic potential of miRs. Finally, we corroborated our miR signature in acute cellular renal allograft rejection, suggesting a nonorgan specific signature of acute rejection. We concluded that miR and mRNA profiling in human and murine ACR revealed the shared significant dysregulation of immune genes. Inflammatory miRs, for example miR-155, and transcripts, in particular those related to the IL-6 pathway, are promising therapeutic targets to prevent acute allograft rejection.


Asunto(s)
Biomarcadores/análisis , Perfilación de la Expresión Génica , Rechazo de Injerto/etiología , Trasplante de Corazón/efectos adversos , Trasplante de Riñón/efectos adversos , MicroARNs/genética , ARN Mensajero/genética , Animales , Western Blotting , Rechazo de Injerto/patología , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/fisiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
2.
Br J Cancer ; 110(5): 1307-15, 2014 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-24518591

RESUMEN

BACKGROUND: Glioblastoma multiforme (GBM), a highly invasive primary brain tumour, remains an incurable disease. Rho GTPases and their activators, guanine nucleotide exchange factors (GEFs), have central roles in GBM invasion. Anti-angiogenic therapies may stimulate GBM invasion via HGF/c-Met signalling. We aim to identify mediators of HGF-induced GBM invasion that may represent targets in a combination anti-angiogenic/anti-invasion therapeutic paradigm. METHODS: Guanine nucleotide exchange factor expression was measured by microarray analysis and western blotting. Specific depletion of proteins was accomplished using siRNA. Cell invasion was determined using matrigel and brain slice assays. Cell proliferation and survival were monitored using sulforhodamine B and colony formation assays. Guanine nucleotide exchange factor and GTPase activities were determined using specific affinity precipitation assays. RESULTS: We found that expression of Dock7, a GEF, is elevated in human GBM tissue in comparison with non-neoplastic brain. We showed that Dock7 mediates serum- and HGF-induced glioblastoma cell invasion. We also showed that Dock7 co-immunoprecipitates with c-Met and that this interaction is enhanced upon HGF stimulation in a manner that is dependent on the adaptor protein Gab1. Dock7 and Gab1 also co-immunoprecipitate in an HGF-dependent manner. Furthermore, Gab1 is required for HGF-induced Dock7 and Rac1 activation and glioblastoma cell invasion. CONCLUSIONS: Dock7 mediates HGF-induced GBM invasion. Targeting Dock7 in GBM may inhibit c-MET-mediated invasion in tumours treated with anti-angiogenic regimens.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proteínas Activadoras de GTPasa/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factor de Crecimiento de Hepatocito/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Inhibidores de la Angiogénesis/genética , Inhibidores de la Angiogénesis/metabolismo , Neoplasias Encefálicas/genética , Procesos de Crecimiento Celular/fisiología , Línea Celular Tumoral , Movimiento Celular/fisiología , Supervivencia Celular/fisiología , Glioblastoma/genética , Factores de Intercambio de Guanina Nucleótido/genética , Factor de Crecimiento de Hepatocito/genética , Humanos , Proteínas Proto-Oncogénicas c-met/genética , Proteínas Proto-Oncogénicas c-met/metabolismo , Proteína de Unión al GTP rac1/genética , Proteína de Unión al GTP rac1/metabolismo , Proteínas de Unión al GTP rho/genética , Proteínas de Unión al GTP rho/metabolismo
3.
J Exp Med ; 194(3): 275-84, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11489947

RESUMEN

p62(dok) has been identified as a substrate of many oncogenic tyrosine kinases such as the chronic myelogenous leukemia (CML) chimeric p210(bcr-abl) oncoprotein. It is also phosphorylated upon activation of many receptors and cytoplamic tyrosine kinases. However, the biological functions of p62(dok) in normal cell signaling as well as in p210(bcr-abl) leukemogenesis are as yet not fully understood. Here we show, in hemopoietic and nonhemopoietic cells derived from p62(dok)-(/)- mice, that the loss of p62(dok) results in increased cell proliferation upon growth factor treatment. Moreover, Ras and mitogen-activated protein kinase (MAPK) activation is markedly sustained in p62(dok)-(/)- cells after the removal of growth factor. However, p62(dok) inactivation does not affect DNA damage and growth factor deprivation-induced apoptosis. Furthermore, p62(dok) inactivation causes a significant shortening in the latency of the fatal myeloproliferative disease induced by retroviral-mediated transduction of p210(bcr-abl) in bone marrow cells. These data indicate that p62(dok) acts as a negative regulator of growth factor-induced cell proliferation, at least in part through downregulating Ras/MAPK signaling pathway, and that p62(dok) can oppose leukemogenesis by p210(bcr-abl).


Asunto(s)
Proteínas de Unión al ADN , Proteínas de Fusión bcr-abl/metabolismo , Leucemia Mielógena Crónica BCR-ABL Positiva/etiología , Leucemia Mielógena Crónica BCR-ABL Positiva/prevención & control , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN , Proteínas ras/metabolismo , Animales , División Celular , Células Cultivadas , Activación Enzimática , Marcación de Gen , Humanos , Leucemia Mielógena Crónica BCR-ABL Positiva/metabolismo , Ratones , Ratones Noqueados , Fosfoproteínas/genética , Transducción de Señal
4.
J Exp Med ; 194(3): 265-74, 2001 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-11489946

RESUMEN

A major pathway by which growth factors, such as platelet-derived growth factor (PDGF), regulate cell proliferation is via the receptor tyrosine kinase/Ras/mitogen-activated protein kinase (MAPK) signaling cascade. The output of this pathway is subjected to tight regulation of both positive and negative regulators. One such regulator is p62(dok), the prototype of a newly identified family of adaptor proteins. We recently provided evidence, through the use of p62(dok)-deficient cells, that p62(dok) acts as a negative regulator of growth factor-induced cell proliferation and the Ras/MAPK pathway. We show here that reintroduction of p62(dok) into p62(dok)-(/)- cells can suppress the increased cell proliferation and prolonged MAPK activity seen in these cells, and that plasma membrane recruitment of p62(dok) is essential for its function. We also show that the PDGF-triggered plasma membrane translocation of p62(dok) requires activation of phosphoinositide 3-kinase (PI3-kinase) and binding of its pleckstrin homology (PH) domain to 3'-phosphorylated phosphoinositides. Furthermore, we demonstrate that p62(dok) can exert its negative effect on the PDGFR/MAPK pathway independently of its ability to associate with RasGAP and Nck. We conclude that p62(dok) functions as a negative regulator of the PDGFR/Ras/MAPK signaling pathway through a mechanism involving PI3-kinase-dependent recruitment of p62(dok) to the plasma membrane.


Asunto(s)
Proteínas de Unión al ADN , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Unión al ARN , Proteínas Adaptadoras Transductoras de Señales , Animales , Sitios de Unión , Transporte Biológico Activo/efectos de los fármacos , División Celular , Línea Celular , Membrana Celular/metabolismo , Activación Enzimática , Humanos , Técnicas In Vitro , Ratones , Ratones Noqueados , Proteínas Oncogénicas/metabolismo , Fosfatidilinositoles/metabolismo , Fosfoproteínas/química , Fosfoproteínas/deficiencia , Fosfoproteínas/genética , Factor de Crecimiento Derivado de Plaquetas/metabolismo , Factor de Crecimiento Derivado de Plaquetas/farmacología , Estructura Terciaria de Proteína , Ratas , Receptores del Factor de Crecimiento Derivado de Plaquetas/metabolismo , Transducción de Señal , Proteínas Activadoras de ras GTPasa/metabolismo , Proteínas ras/metabolismo
5.
Science ; 274(5291): 1374-6, 1996 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-8910277

RESUMEN

The RAC guanine nucleotide binding proteins regulate multiple biological activities, including actin polymerization, activation of the Jun kinase (JNK) cascade, and cell proliferation. RAC effector loop mutants were identified that separate the ability of RAC to interact with different downstream effectors. One mutant of activated human RAC protein, RACV12H40 (with valine and histidine substituted at position 12 and 40, respectively), was defective in binding to PAK3, a Ste20-related p21-activated kinase (PAK), but bound to POR1, a RAC-binding protein. This mutant failed to stimulate PAK and JNK activity but still induced membrane ruffling and mediated transformation. A second mutant, RACV12L37 (with leucine substituted at position 37), which bound PAK but not POR1, induced JNK activation but was defective in inducing membrane ruffling and transformation. These results indicate that the effects of RAC on the JNK cascade and on actin polymerization and cell proliferation are mediated by distinct effector pathways that diverge at the level of RAC itself.


Asunto(s)
Actinas/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , División Celular , Proteínas de Unión al GTP/fisiología , Proteínas Quinasas Activadas por Mitógenos , Células 3T3 , Animales , Células COS , Proteínas Portadoras/metabolismo , Línea Celular , Línea Celular Transformada , Membrana Celular/ultraestructura , Activación Enzimática , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Mutagénesis , Proteínas Serina-Treonina Quinasas/metabolismo , Ratas , Transfección , Quinasas p21 Activadas , Proteínas de Unión al GTP rac
6.
Science ; 260(5112): 1338-43, 1993 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-8493579

RESUMEN

A human complementary DNA was isolated that encodes a widely expressed protein, hSos1, that is closely related to Sos, the product of the Drosophila son of sevenless gene. The hSos1 protein contains a region of significant sequence similarity to CDC25, a guanine nucleotide exchange factor for Ras from yeast. A fragment of hSos1 encoding the CDC25-related domain complemented loss of CDC25 function in yeast. This hSos1 domain specifically stimulated guanine nucleotide exchange on mammalian Ras proteins in vitro. Mammalian cells overexpressing full-length hSos1 had increased guanine nucleotide exchange activity. Thus hSos1 is a guanine nucleotide exchange factor for Ras. The hSos1 interacted with growth factor receptor-bound protein 2 (GRB2) in vivo and in vitro. This interaction was mediated by the carboxyl-terminal domain of hSos1 and the Src homology 3 (SH3) domains of GRB2. These results suggest that the coupling of receptor tyrosine kinases to Ras signaling is mediated by a molecular complex consisting of GRB2 and hSos1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas de Ciclo Celular , Proteínas Fúngicas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , ras-GRF1 , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Proteínas Fúngicas/química , Proteína Adaptadora GRB2 , Factores de Intercambio de Guanina Nucleótido , Guanosina Difosfato/metabolismo , Guanosina Trifosfato/metabolismo , Humanos , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Ratones , Datos de Secuencia Molecular , Proteínas Recombinantes de Fusión/metabolismo , Alineación de Secuencia , Proteínas Son Of Sevenless , Factores de Intercambio de Guanina Nucleótido ras
7.
Nat Neurosci ; 3(3): 217-25, 2000 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-10700252

RESUMEN

The development and structural plasticity of dendritic arbors are governed by several factors, including synaptic activity, neurotrophins and other growth-regulating molecules. The signal transduction pathways leading to dendritic structural changes are unknown, but likely include cytoskeleton regulatory components. To test whether GTPases regulate dendritic arbor development, we collected time-lapse images of single optic tectal neurons in albino Xenopus tadpoles expressing dominant negative or constitutively active forms of Rac, Cdc42 or RhoA. Analysis of images collected at two-hour intervals over eight hours indicated that enhanced Rac activity selectively increased branch additions and retractions, as did Cdc42 to a lesser extent. Activation of endogenous RhoA decreased branch extension without affecting branch additions and retractions, whereas dominant-negative RhoA increased branch extension. Finally, we provide data suggesting that RhoA mediates the promotion of normal dendritic arbor development by NMDA receptor activation.


Asunto(s)
Dendritas/enzimología , Dendritas/fisiología , Colículos Superiores/citología , Proteínas de Unión al GTP rho/metabolismo , 2-Amino-5-fosfonovalerato/farmacología , Actinas/metabolismo , Animales , Tamaño de la Célula/efectos de los fármacos , Citoesqueleto/efectos de los fármacos , Citoesqueleto/metabolismo , Dendritas/efectos de los fármacos , Dendritas/ultraestructura , Activación Enzimática/genética , Genes Dominantes/genética , Humanos , Larva/citología , Larva/efectos de los fármacos , Mutación/genética , Plasticidad Neuronal/efectos de los fármacos , Receptores de N-Metil-D-Aspartato/antagonistas & inhibidores , Receptores de N-Metil-D-Aspartato/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Colículos Superiores/efectos de los fármacos , Colículos Superiores/enzimología , Colículos Superiores/metabolismo , Virus Vaccinia/genética , Xenopus laevis , Proteína de Unión al GTP cdc42/genética , Proteína de Unión al GTP cdc42/metabolismo , Proteínas de Unión al GTP rac/genética , Proteínas de Unión al GTP rac/metabolismo , Proteínas de Unión al GTP rho/genética , Proteína de Unión al GTP rhoA/genética , Proteína de Unión al GTP rhoA/metabolismo
9.
Mol Cell Biol ; 18(7): 3936-46, 1998 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-9632778

RESUMEN

Leukocyte adhesion to the extracellular matrix (ECM) is tightly controlled and is vital for the immune response. Circulating lymphocytes leave the bloodstream and adhere to ECM components at sites of inflammation and lymphoid tissues. Mechanisms for regulating T-lymphocyte-ECM adhesion include (i) an alteration in the affinity of cell surface integrin receptors for their extracellular ligands and (ii) an alteration of events following postreceptor occupancy (e.g., cell spreading). Whereas H-Ras and R-Ras were previously shown to affect T-cell adhesion by altering the affinity state of the integrin receptors, no signaling molecule has been identified for the second mechanism. In this study, we demonstrated that expression of an activated mutant of Rac triggered dramatic spreading of T cells and their increased adhesion on immobilized fibronectin in an integrin-dependent manner. This effect was not mimicked by expression of activated mutant forms of Rho, Cdc42, H-Ras, or ARF6, indicating the unique role of Rac in this event. The Rac-induced spreading was accompanied by specific cytoskeletal rearrangements. Also, a clustering of integrins at sites of cell adhesion and at the peripheral edges of spread cells was observed. We demonstrate that expression of RacV12 did not alter the level of expression of cell surface integrins or the affinity state of the integrin receptors. Moreover, our results indicate that Rac plays a role in the regulation of T-cell adhesion by a mechanism involving cell spreading, rather than by altering the level of expression or the affinity of the integrin receptors. Furthermore, we show that the Rac-mediated signaling pathway leading to spreading of T lymphocytes did not require activation of c-Jun kinase, serum response factor, or pp70(S6 kinase) but appeared to involve a phospholipid kinase.


Asunto(s)
GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Integrinas/metabolismo , Linfocitos T/fisiología , Adhesión Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Citoesqueleto/fisiología , Fibronectinas/metabolismo , Proteínas de Unión al GTP/genética , Humanos , Integrina alfa4beta1 , Células Jurkat , Fosfatidilinositol 3-Quinasas/metabolismo , Receptores de Fibronectina/metabolismo , Receptores Mensajeros de Linfocitos/metabolismo , Linfocitos T/metabolismo , Células Tumorales Cultivadas , Proteína de Unión al GTP cdc42 , Proteínas de Unión al GTP rac , Proteínas de Unión al GTP rho
10.
Mol Cell Biol ; 16(10): 5597-603, 1996 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-8816472

RESUMEN

A conserved MAP kinase cascade is central to signal transduction in both simple and complex eukaryotes. In the yeast Schizosaccharomyces pombe, Byr2, a homolog of mammalian MAPK/ERK kinase kinase and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation. A screen for S. pombe proteins that interact with Byr2 in a two-hybrid system led to the isolation of Ste4, a protein that is known to be required for sexual function. Ste4 binds to the regulatory region of Byr2. This binding site is separable from the binding site for Ras1. Both Ste4 and Ras1 act upstream of Byr2 and act at least partially independently. Ste4 contains a leucine zipper and is capable of homotypic interaction. Ste4 has regions of homology with STE50, an S. cerevisiae protein required for sexual differentiation that we show can bind to STE11.


Asunto(s)
Proteínas Fúngicas/metabolismo , Subunidades beta de la Proteína de Unión al GTP , Proteínas de Unión al GTP/metabolismo , Proteínas de Unión al GTP Heterotriméricas , Quinasas Quinasa Quinasa PAM , Proteínas Quinasas/metabolismo , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/fisiología , Sitios de Unión , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Cruzamientos Genéticos , Cartilla de ADN , Genotipo , Leucina Zippers , Quinasas de Proteína Quinasa Activadas por Mitógenos , Mutagénesis Sitio-Dirigida , Feromonas/fisiología , Reacción en Cadena de la Polimerasa , Proteínas Recombinantes de Fusión/metabolismo , Recombinación Genética , Transducción de Señal , Esporas Fúngicas , Factores de Transcripción/metabolismo , Proteínas ras/metabolismo
11.
Mol Cell Biol ; 20(10): 3685-94, 2000 May.
Artículo en Inglés | MEDLINE | ID: mdl-10779358

RESUMEN

In this study, we have documented an essential role for ADP-ribosylation factor 6 (ARF6) in cell surface remodeling in response to physiological stimulus and in the down regulation of stress fiber formation. We demonstrate that the G-protein-coupled receptor agonist bombesin triggers the redistribution of ARF6- and Rac1-containing endosomal vesicles to the cell surface. This membrane redistribution was accompanied by cortical actin rearrangements and was inhibited by dominant negative ARF6, implying that bombesin is a physiological trigger of ARF6 activation. Furthermore, these studies provide a new model for bombesin-induced Rac1 activation that involves ARF6-regulated endosomal recycling. The bombesin-elicited translocation of vesicular ARF6 was mimicked by activated Galphaq and was partially inhibited by expression of RGS2, which down regulates Gq function. This suggests that Gq functions as an upstream regulator of ARF6 activation. The ARF6-induced peripheral cytoskeletal rearrangements were accompanied by a depletion of stress fibers. Moreover, cells expressing activated ARF6 resisted the formation of stress fibers induced by lysophosphatidic acid. We show that the ARF6-dependent inhibition of stress fiber formation was due to an inhibition of RhoA activation and was overcome by expression of a constitutively active RhoA mutant. The latter observations demonstrate that activation of ARF6 down regulates Rho signaling. Our findings underscore the potential roles of ARF6, Rac1, and RhoA in the coordinated regulation of cytoskeletal remodeling.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Factor 6 de Ribosilación del ADP , Actinas/ultraestructura , Animales , Transporte Biológico/efectos de los fármacos , Bombesina/farmacología , Células CHO , Membrana Celular/metabolismo , Cricetinae , Citoesqueleto/ultraestructura , Endosomas/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos , Proteínas Quinasas Activadas por Mitógenos/metabolismo
12.
Mol Cell Biol ; 10(9): 4518-23, 1990 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-2201893

RESUMEN

Addition of glucose or related fermentable sugars to derepressed cells of the yeast Saccharomyces cerevisiae triggers a RAS-mediated cyclic AMP (cAMP) signal that induces a protein phosphorylation cascade. In yeast mutants (tpk1w1, tpk2w1, and tpk3w1) containing reduced activity of cAMP-dependent protein kinase, fermentable sugars, as opposed to nonfermentable carbon sources, induced a permanent hyperaccumulation of cAMP. This finding confirms previous conclusions that fermentable sugars are specific stimulators of cAMP synthesis in yeast cells. Despite the huge cAMP levels present in these mutants, deletion of the gene (BCY1) coding for the regulatory subunit of cAMP-dependent protein kinase severely reduced hyperaccumulation of cAMP. Glucose-induced hyperaccumulation of cAMP was also observed in exponential-phase glucose-grown cells of the tpklw1 and tpk2w1 strains but not the tpk3w1 strain even though addition of glucose to glucose-repressed wild-type cells did not induce a cAMP signal. Investigation of mitochondrial respiration by in vivo 31P nuclear magnetic resonance spectroscopy showed the tpk1w1 and tpk2w1 strains, to be defective in glucose repression. These results are consistent with the idea that the signal transmission pathway from glucose to adenyl cyclase contains a glucose-repressible protein. They also show that a certain level of cAMP-dependent protein phosphorylation is required for glucose repression. Investigation of the glucose-induced cAMP signal and glucose-induced activation of trehalase in derepressed cells of strains containing only one of the wild-type TPK genes indicates that the transient nature of the cAMP signal is due to feedback inhibition by cAMP-dependent protein kinase.


Asunto(s)
Glucosa/farmacología , Proteínas Quinasas/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfato/metabolismo , Activación Enzimática , Represión Enzimática , Genotipo , Concentración de Iones de Hidrógeno , Cinética , Proteínas Quinasas/biosíntesis , Proteínas Quinasas/genética , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Transducción de Señal , Trehalasa/metabolismo
13.
Mol Cell Biol ; 14(6): 3707-18, 1994 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-8196614

RESUMEN

In the fission yeast Schizosaccharomyces pombe, ras1 regulates both sexual development (conjugation and sporulation) and cellular morphology. Two types of dominant interfering mutants were isolated in a genetic screen for ras1 mutants that blocked sexual development. The first type of mutation, at Ser-22, analogous to the H-rasAsn-17 mutant (L. A. Feig and G. M. Cooper, Mol. Cell. Biol. 8:3235-3243, 1988), blocked only conjugation, whereas a second type of mutation, at Asp-62, interfered with conjugation, sporulation, and cellular morphology. Analogous mutations at position 64 of Saccharomyces cerevisiae RAS2 or position 57 of human H-ras also resulted in dominant interfering mutants that interfered specifically and more profoundly than mutants of the first type with RAS-associated pathways in both S. pombe or S. cerevisiae. Genetic evidence indicating that both types of interfering mutants function upstream of RAS is provided. Biochemical evidence showing that the mutants are altered in their interaction with the CDC25 class of exchange factors is presented. We show that both H-rasAsn-17 and H-rasTyr-57, compared with wild-type H-ras, are defective in their guanine nucleotide-dependent release from human cdc25 and that this defect is more severe for the H-rasTyr-57 mutant. Such a defect would allow the interfering mutants to remain bound to, thereby sequestering RAS exchange factors. The more severe interference phenotype of this novel interfering mutant suggests that it functions by titrating out other positive regulators of RAS besides those encoded by ste6 and CDC25.


Asunto(s)
Proteínas Fúngicas/biosíntesis , Genes Fúngicos , Genes ras , Proteínas de Saccharomyces cerevisiae , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces/genética , Proteínas ras , Secuencia de Bases , Clonación Molecular , Conjugación Genética , Proteínas Fúngicas/genética , Genotipo , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Oligodesoxirribonucleótidos , Plásmidos , Mapeo Restrictivo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/fisiología , Schizosaccharomyces/crecimiento & desarrollo , Schizosaccharomyces/fisiología , Esporas Fúngicas/genética , Esporas Fúngicas/fisiología
14.
Mol Cell Biol ; 17(3): 1324-35, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9032259

RESUMEN

Rac1 and RhoA are members of the Rho family of Ras-related proteins and function as regulators of actin cytoskeletal organization, gene expression, and cell cycle progression. Constitutive activation of Rac1 and RhoA causes tumorigenic transformation of NIH 3T3 cells, and their functions may be required for full Ras transformation. The effectors by which Rac1 and RhoA mediate these diverse activities, as well as the interrelationship between these events, remain poorly understood. Rac1 is distinct from RhoA in its ability to bind and activate the p65 PAK serine/threonine kinase, to induce lamellipodia and membrane ruffling, and to activate the c-Jun NH2-terminal kinase (JNK). To assess the role of PAK in Rac1 function, we identified effector domain mutants of Rac1 and Rac1-RhoA chimeric proteins that no longer bound PAK. Surprisingly, PAK binding was dispensable for Rac1-induced transformation and lamellipodium formation, as well as activation of JNK, p38, and serum response factor (SRF). However, the ability of Rac1 to bind to and activate PAK correlated with its ability to stimulate transcription from the cyclin D1 promoter. Furthermore, Rac1 activation of JNK or SRF, or induction of lamellipodia, was neither necessary nor sufficient for Rac1 transforming activity. Finally, the signaling pathways that mediate Rac1 activation of SRF or JNK were distinct from those that mediate Rac1 induction of lamellipodia. Taken together, these observations suggest that Rac1 regulates at least four distinct effector-mediated functions and that multiple pathways may contribute to Rac1-induced cellular transformation.


Asunto(s)
Actinas/fisiología , Transformación Celular Neoplásica , Proteínas de Unión al GTP/fisiología , Regulación de la Expresión Génica/fisiología , Proteínas Quinasas Activadas por Mitógenos , Proteínas Serina-Treonina Quinasas/fisiología , Células 3T3 , Secuencia de Aminoácidos , Animales , Células COS , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Línea Celular , Ciclina D1 , Ciclinas/genética , Proteínas de Unión al ADN/metabolismo , Endotelio Vascular , Activación Enzimática , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos , Ratones , Datos de Secuencia Molecular , Proteínas Nucleares/metabolismo , Proteínas Oncogénicas/genética , Regiones Promotoras Genéticas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Seudópodos , Proteínas Recombinantes de Fusión , Factor de Respuesta Sérica , Transducción de Señal/fisiología , Porcinos , Activación Transcripcional , eIF-2 Quinasa , Proteínas de Unión al GTP rac , Proteína de Unión al GTP rhoA
15.
Mol Cell Biol ; 17(3): 1346-53, 1997 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-9032261

RESUMEN

Vav is a member of a family of oncogene proteins that share an approximately 250-amino-acid motif called a Dbl homology domain. Paradoxically, Dbl itself and other proteins containing a Dbl domain catalyze GTP-GDP exchange for Rho family proteins, whereas Vav has been reported to catalyze GTP-GDP exchange for Ras proteins. We present Saccharomyces cerevisiae genetic data, in vitro biochemical data, and animal cell biological data indicating that Vav is a guanine nucleotide exchange factor for Rho-related proteins, but in similar genetic and biochemical experiments we fail to find evidence that Vav is a guanine nucleotide exchange factor for Ras. Further, we present data indicating that the Lck kinase activates the guanine nucleotide exchange factor and transforming activity of Vav.


Asunto(s)
Proteínas de Unión al GTP/metabolismo , Factores de Intercambio de Guanina Nucleótido , Proteínas Proto-Oncogénicas/metabolismo , Proteínas de Saccharomyces cerevisiae , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Fibroblastos , Guanosina Difosfato/metabolismo , Humanos , Proteína Tirosina Quinasa p56(lck) Específica de Linfocito , Fosforilación , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/fisiología , Proteínas Proto-Oncogénicas c-vav , Seudópodos , Ratas , Proteínas Recombinantes de Fusión/metabolismo , Saccharomyces cerevisiae/fisiología , Supresión Genética , Proteína de Unión al GTP cdc42 , Proteínas de Unión al GTP rac , Proteínas ras/metabolismo , Proteína de Unión al GTP rhoA
16.
Mol Cell Biol ; 16(7): 3923-33, 1996 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-8668210

RESUMEN

Substantial evidence supports a critical role for the activation of the Raf-1/MEK/mitogen-activated protein kinase pathway in oncogenic Ras-mediated transformation. For example, dominant negative mutants of Raf-1, MEK, and mitogen-activated protein kinase all inhibit Ras transformation. Furthermore, the observation that plasma membrane-localized Raf-1 exhibits the same transforming potency as oncogenic Ras suggests that Raf-1 activation alone is sufficient to mediate full Ras transforming activity. However, the recent identification of other candidate Ras effectors (e.g., RalGDS and phosphatidylinositol-3 kinase) suggests that activation of other downstream effector-mediated signaling pathways may also mediate Ras transforming activity. In support of this, two H-Ras effector domain mutants, H-Ras(12V, 37G) and H-Ras(12V, 40C), which are defective for Raf binding and activation, induced potent tumorigenic transformation of some strains of NIH 3T3 fibroblasts. These Raf-binding defective mutants of H-Ras induced a transformed morphology that was indistinguishable from that induced by activated members of Rho family proteins. Furthermore, the transforming activities of both of these mutants were synergistically enhanced by activated Raf-1 and inhibited by the dominant negative RhoA(19N) mutant, indicating that Ras may cause transformation that occurs via coordinate activation of Raf-dependent and -independent pathways that involves Rho family proteins. Finally, cotransfection of H-Ras(12V, 37G) and H-Ras(12V, 40C) resulted in synergistic cooperation of their focus-forming activities, indicating that Ras activates at least two Raf-independent, Ras effector-mediated signaling events.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Transformación Celular Neoplásica , Genes ras , Proteínas Quinasas JNK Activadas por Mitógenos , Quinasa 1 de Quinasa de Quinasa MAP , Quinasas de Proteína Quinasa Activadas por Mitógenos , Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3 , Animales , Proteínas de Unión al GTP/metabolismo , Humanos , Cinética , Luciferasas/metabolismo , MAP Quinasa Quinasa 4 , Ratones , Proteínas Proto-Oncogénicas/metabolismo , Proteínas Proto-Oncogénicas c-raf , Proteínas Recombinantes/metabolismo , Transfección
17.
Genetics ; 154(4): 1473-84, 2000 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-10747046

RESUMEN

The Saccharomyces cerevisiae CDC25 gene encodes a guanine nucleotide exchange factor (GEF) for Ras proteins. Its catalytic domain is highly homologous to Ras-GEFs from all eukaryotes. Even though Cdc25 is the first Ras-GEF identified in any organism, we still know very little about how its function is regulated in yeast. In this work we provide evidence for the involvement of the N terminus of Cdc25 in the regulation of its activity. A truncated CDC25 lacking the noncatalytic C-terminal coding sequence was identified in a screen of high-copy suppressors of the heat-shock-sensitive phenotype of strains in which the Ras pathway is hyper-activated. The truncated gene acts as a dominant-negative mutant because it only suppresses the heat-shock sensitivity of strains that require the function of CDC25. Our two-hybrid assays and immunoprecipitation analyses show interactions between the N terminus of Cdc25 and itself, the C terminus, and the full-length protein. These results suggest that the dominant-negative effect may be a result of oligomerization with endogenous Cdc25. Further evidence of the role of the N terminus of Cdc25 in the regulation of its activity is provided by the mapping of the activating mutation of CDC25HS20 to the serine residue at position 365 in the noncatalytic N-terminal domain. This mutation induces a phenotype similar to activating mutants of other genes in the Ras pathway in yeast. Hence, the N terminus may exert a negative control on the catalytic activity of the protein. Taken together these results suggest that the N terminus plays a crucial role in regulating Cdc25 and consequently Ras activity, which in S. cerevisiae is essential for cell cycle progression.


Asunto(s)
Proteínas de Ciclo Celular/metabolismo , Proteínas Fúngicas/metabolismo , Saccharomyces cerevisiae/metabolismo , ras-GRF1/metabolismo , Secuencia de Bases , Catálisis , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Cartilla de ADN , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Mutación , Fenotipo , ras-GRF1/química , ras-GRF1/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda