Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Plant J ; 116(1): 7-22, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37608631

RESUMEN

Strigolactones are a class of phytohormones that are involved in many different plant developmental processes, including the rhizobium-legume nodule symbiosis. Although both positive and negative effects of strigolactones on the number of nodules have been reported, the influence of strigolactones on nodule development is still unknown. Here, by means of the ramosus (rms) mutants of Pisum sativum (pea) cv Terese, we investigated the impact of strigolactone biosynthesis (rms1 and rms5) and signaling (rms3 and rms4) mutants on nodule growth. The rms mutants had more red, that is, functional, and larger nodules than the wild-type plants. Additionally, the increased nitrogen fixation and senescence zones with consequently reduced meristematic and infection zones indicated that the rms nodules developed faster than the wild-type nodules. An enhanced expression of the nodule zone-specific molecular markers for meristem activity and senescence supported the enlarged, fast maturing nodules. Interestingly, the master nodulation regulator, NODULE INCEPTION, NIN, was strongly induced in nodules of all rms mutants but not prior to inoculation. Determination of sugar levels with both bulk and spatial metabolomics in roots and nodules, respectively, hints at slightly increased malic acid levels early during nodule primordia formation and reduced sugar levels at later stages, possibly the consequence of an increased carbon usage of the enlarged nodules, contributing to the enhanced senescence. Taken together, these results suggest that strigolactones regulate the development of nodules, which is probably mediated through NIN, and available plant sugars.


Asunto(s)
Pisum sativum , Reguladores del Crecimiento de las Plantas , Pisum sativum/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/metabolismo , Fijación del Nitrógeno/fisiología , Simbiosis/fisiología , Azúcares/metabolismo , Nódulos de las Raíces de las Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo
2.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298075

RESUMEN

Plants are colonized by various fungi with both pathogenic and beneficial lifestyles. One type of colonization strategy is through the secretion of effector proteins that alter the plant's physiology to accommodate the fungus. The oldest plant symbionts, the arbuscular mycorrhizal fungi (AMF), may exploit effectors to their benefit. Genome analysis coupled with transcriptomic studies in different AMFs has intensified research on the effector function, evolution, and diversification of AMF. However, of the current 338 predicted effector proteins from the AM fungus Rhizophagus irregularis, only five have been characterized, of which merely two have been studied in detail to understand which plant proteins they associate with to affect the host physiology. Here, we review the most recent findings in AMF effector research and discuss the techniques used for the functional characterization of effector proteins, from their in silico prediction to their mode of action, with an emphasis on high-throughput approaches for the identification of plant targets of the effectors through which they manipulate their hosts.


Asunto(s)
Micorrizas , Micorrizas/fisiología , Plantas/genética , Plantas/microbiología , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas
3.
Environ Microbiol ; 24(8): 3334-3354, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35212122

RESUMEN

In Europe, soybean (Glycine max) used for food and feed has to be imported, causing negative socioeconomic and environmental impacts. To increase the local production, breeding generated varieties that grow in colder climates, but the yield using the commercial inoculants is not satisfactory in Belgium because of variable nodulation efficiencies. To look for indigenous nodulating strains possibly adapted to the local environment, we initiated a nodulation trap by growing early-maturing cultivars under natural and greenhouse conditions in 107 garden soils in Flanders. Nodules occurred in 18 and 21 soils in the garden and greenhouse experiments respectively. By combining 16S rRNA PCR on single isolates with HiSeq 16S metabarcoding on nodules, we found a large bacterial richness and diversity from different soils. Furthermore, using Oxford Nanopore Technologies sequencing of DNA from one nodule, we retrieved the entire genome of a Bradyrhizobium species, not previously isolated, but profusely present in that nodule. These data highlight the need of combining diverse identification techniques to capture the true nodule rhizobial community. Eight selected rhizobial isolates were subdivided by whole-genome analysis in three genera containing six genetically distinct species that, except for two, aligned with known type strains and were all able to nodulate soybean in the laboratory.


Asunto(s)
Bradyrhizobium , Fabaceae , Rhizobium , ADN Bacteriano/genética , Filogenia , ARN Ribosómico 16S/genética , Rhizobium/genética , Nódulos de las Raíces de las Plantas/microbiología , Suelo , Glycine max/microbiología , Simbiosis/genética
6.
Plant Cell ; 34(4): 1153-1154, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35234906
8.
Plant Mol Biol ; 99(1-2): 79-93, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30511331

RESUMEN

KEY MESSAGE: Here, we used a hxk1 mutant in the Col-0 background. We demonstrated that HXK1 regulates cell proliferation and expansion early during leaf development, and that HXK1 is involved in sucrose-induced leaf growth stimulation independent of GPT2. Furthermore, we identified KINγ as a novel HXK1-interacting protein. In the last decade, extensive efforts have been made to unravel the underlying mechanisms of plant growth control through sugar availability. Signaling by the conserved glucose sensor HEXOKINASE1 (HXK1) has been shown to exert both growth-promoting and growth-inhibitory effects depending on the sugar levels, the environmental conditions and the plant species. Here, we used a hxk1 mutant in the Col-0 background to investigate the role of HXK1 during leaf growth in more detail and show that it is affected in both cell proliferation and cell expansion early during leaf development. Furthermore, the hxk1 mutant is less sensitive to sucrose-induced cell proliferation with no significant increase in final leaf growth after transfer to sucrose. Early during leaf development, transfer to sucrose stimulates expression of GLUCOSE-6-PHOSPHATE/PHOSPHATE TRANSPORTER2 (GPT2) and represses chloroplast differentiation. However, in the hxk1 mutant GPT2 expression was still upregulated by transfer to sucrose although chloroplast differentiation was not affected, suggesting that GPT2 is not involved in HXK1-dependent regulation of leaf growth. Finally, using tandem affinity purification of protein complexes from cell cultures, we identified KINγ, a protein containing four cystathionine ß-synthase domains, as an interacting protein of HXK1.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Hexoquinasa/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Hexoquinasa/genética , Proteínas de Transporte de Monosacáridos/genética , Mutación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/crecimiento & desarrollo , Proteínas Serina-Treonina Quinasas/genética , Plantones/enzimología , Plantones/genética , Plantones/crecimiento & desarrollo , Sacarosa/metabolismo
9.
New Phytol ; 223(2): 814-827, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30903620

RESUMEN

Optimal timing of flowering, a major determinant for crop productivity, is controlled by environmental and endogenous cues. Nutrients are known to modify flowering time; however, our understanding of how nutrients interact with the known pathways, especially at the shoot apical meristem (SAM), is still incomplete. Given the negative side-effects of nitrogen fertilization, it is essential to understand its mode of action for sustainable crop production. We investigated how a moderate restriction by nitrate is integrated into the flowering network at the SAM, to which plants can adapt without stress symptoms. This condition delays flowering by decreasing expression of SUPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) at the SAM. Measurements of nitrate and the responses of nitrate-responsive genes suggest that nitrate functions as a signal at the SAM. The transcription factors NIN-LIKE PROTEIN 7 (NLP7) and NLP6, which act as master regulators of nitrate signaling by binding to nitrate-responsive elements (NREs), are expressed at the SAM and flowering is delayed in single and double mutants. Two upstream regulators of SOC1 (SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 (SPL3) and SPL5) contain functional NREs in their promoters. Our results point at a tissue-specific, nitrate-mediated flowering time control in Arabidopsis thaliana.


Asunto(s)
Arabidopsis/metabolismo , Flores/fisiología , Meristema/metabolismo , Nitratos/metabolismo , Arabidopsis/anatomía & histología , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , Fotoperiodo , Transducción de Señal , Fosfatos de Azúcar/metabolismo , Trehalosa/análogos & derivados , Trehalosa/metabolismo
10.
Plant Cell ; 33(6): 1853-1854, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-35234256

Asunto(s)
Bacterias , Hierro
13.
Plant Physiol ; 171(1): 590-605, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26932234

RESUMEN

Leaves are the plant's powerhouses, providing energy for all organs through sugar production during photosynthesis. However, sugars serve not only as a metabolic energy source for sink tissues but also as signaling molecules, affecting gene expression through conserved signaling pathways to regulate plant growth and development. Here, we describe an in vitro experimental assay, allowing one to alter the sucrose (Suc) availability during early Arabidopsis (Arabidopsis thaliana) leaf development, with the aim to identify the affected cellular and molecular processes. The transfer of seedlings to Suc-containing medium showed a profound effect on leaf growth by stimulating cell proliferation and postponing the transition to cell expansion. Furthermore, rapidly after transfer to Suc, mesophyll cells contained fewer and smaller plastids, which are irregular in shape and contain fewer starch granules compared with control mesophyll cells. Short-term transcriptional responses after transfer to Suc revealed the repression of well-known sugar-responsive genes and multiple genes encoded by the plastid, on the one hand, and up-regulation of a GLUCOSE-6-PHOSPHATE TRANSPORTER (GPT2), on the other hand. Mutant gpt2 seedlings showed no stimulation of cell proliferation and no repression of chloroplast-encoded transcripts when transferred to Suc, suggesting that GPT2 plays a critical role in the Suc-mediated effects on early leaf growth. Our findings, therefore, suggest that induction of GPT2 expression by Suc increases the import of glucose-6-phosphate into the plastids that would repress chloroplast-encoded transcripts, restricting chloroplast differentiation. Retrograde signaling from the plastids would then delay the transition to cell expansion and stimulate cell proliferation.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Cloroplastos/metabolismo , Proteínas de Transporte de Monosacáridos/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Sacarosa/metabolismo , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proliferación Celular/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Células del Mesófilo/efectos de los fármacos , Proteínas de Transporte de Monosacáridos/genética , Mutación , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Plantones/efectos de los fármacos , Plantones/crecimiento & desarrollo , Sacarosa/farmacología
14.
Plant Cell Environ ; 40(9): 1748-1760, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28444690

RESUMEN

Strobilurins are an important class of agrochemical fungicides used throughout the world on a wide variety of crops as protection against fungal pathogens. In addition to this protective role, they are reported to also positively influence plant physiology. In this study, we analysed the effect of Stroby® WG, a commercially available fungicide consisting of 50% (w/w) kresoxim-methyl (KM) as active strobilurin compound, on Arabidopsis leaf growth. Treatment of seedlings with Stroby resulted in larger leaves due to an increase in cell number. Transcriptome analysis of Stroby-treated rosettes demonstrated an increased expression of genes involved in redox homeostasis, iron metabolism and sugar transport. Stroby treatment strongly induced the expression of the subgroup Ib basic helix-loop-helix (bHLH) transcription factors, which have a role in iron homeostasis under iron-limiting conditions. Single loss-of-function mutants of three bHLHs and their triple bhlh039, bhlh100 and bhlh101 mutant did not respond to Stroby treatment. Although iron and sucrose content was not affected, nitric oxide (NO) levels and nitrate reductase (NR) activity were significantly increased in Stroby-treated rosettes as compared with control plants. In conclusion, we suggest that the Stroby-mediated effects on growth depend on the increased expression of the subgroup Ib bHLHs and higher NO levels.


Asunto(s)
Arabidopsis/crecimiento & desarrollo , Hojas de la Planta/crecimiento & desarrollo , Estrobilurinas/farmacología , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Hierro/metabolismo , Mutación/genética , Óxido Nítrico/metabolismo , Hojas de la Planta/efectos de los fármacos , Sacarosa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
15.
Plant Physiol ; 167(3): 817-32, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25604530

RESUMEN

Arabidopsis (Arabidopsis thaliana) leaf development relies on subsequent phases of cell proliferation and cell expansion. During the proliferation phase, chloroplasts need to divide extensively, and during the transition from cell proliferation to expansion, they differentiate into photosynthetically active chloroplasts, providing the plant with energy. The transcription factor GROWTH REGULATING FACTOR5 (GRF5) promotes the duration of the cell proliferation period during leaf development. Here, it is shown that GRF5 also stimulates chloroplast division, resulting in a higher chloroplast number per cell with a concomitant increase in chlorophyll levels in 35S:GRF5 leaves, which can sustain higher rates of photosynthesis. Moreover, 35S:GRF5 plants show delayed leaf senescence and are more tolerant for growth on nitrogen-depleted medium. Cytokinins also stimulate leaf growth in part by extending the cell proliferation phase, simultaneously delaying the onset of the cell expansion phase. In addition, cytokinins are known to be involved in chloroplast development, nitrogen signaling, and senescence. Evidence is provided that GRF5 and cytokinins synergistically enhance cell division and chlorophyll retention after dark-induced senescence, which suggests that they also cooperate to stimulate chloroplast division and nitrogen assimilation. Taken together with the increased leaf size, ectopic expression of GRF5 has great potential to improve plant productivity.


Asunto(s)
Proteínas 14-3-3/metabolismo , Arabidopsis/fisiología , Cloroplastos/metabolismo , Fotosíntesis , Hojas de la Planta/fisiología , Transactivadores/metabolismo , Proteínas 14-3-3/genética , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , División Celular/efectos de los fármacos , Clorofila/metabolismo , Cloroplastos/efectos de los fármacos , Cloroplastos/ultraestructura , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas , Nitrógeno/deficiencia , Fotosíntesis/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Plantas Modificadas Genéticamente , Transactivadores/genética
16.
J Exp Bot ; 67(22): 6267-6281, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27815330

RESUMEN

Chloroplasts and mitochondria are indispensable for plant development. They not only provide energy and carbon sources to cells, but also have evolved to become major players in a variety of processes such as amino acid metabolism, hormone biosynthesis and cellular signalling. As semi-autonomous organelles, they contain a small genome that relies largely on nuclear factors for its maintenance and expression. An intensive crosstalk between the nucleus and the organelles is therefore essential to ensure proper functioning, and the nuclear genes encoding organellar proteins involved in photosynthesis and oxidative phosphorylation are obviously crucial for plant growth. Organ growth is determined by two main cellular processes: cell proliferation and cell expansion. Here, we review how plant growth is affected in mutants of organellar proteins that are differentially expressed during leaf and root development. Our findings indicate a clear role for organellar proteins in plant organ growth, primarily during cell proliferation. However, to date, the role of the nuclear-encoded organellar proteins in the cellular processes driving organ growth has not been investigated in much detail. We therefore encourage researchers to extend their phenotypic characterization beyond macroscopic features in order to get a better view on how chloroplasts and mitochondria regulate the basic processes of cell proliferation and cell expansion, essential to driving growth.


Asunto(s)
Cloroplastos/fisiología , Mitocondrias/fisiología , Desarrollo de la Planta , Proliferación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Desarrollo de la Planta/fisiología , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo
17.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-39325968

RESUMEN

In soil ecosystems, rhizobia occupy the rhizosphere of legume roots to form nodules, a process triggered by microbial recognition of specific root-derived signals (i.e. flavonoids). However, soil conditions can limit bacterial motility, restricting signal perception to the area directly influenced by roots. Legumes, like most plants of agricultural interest, associate with arbuscular mycorrhizal fungi, whose hyphae develop extensively in the soil, potentially providing an effective dispersal network for rhizobia. We hypothesized that mycelial networks of arbuscular mycorrhizal fungi play a role in signal transmission and act as a highway, enabling rhizobia to migrate from distant soil to the roots of leguminous plants. Using in vitro and greenhouse microcosm systems, we demonstrated that Rhizophagus irregularis helps Shinorhizobium meliloti to migrate towards the legume Medicago truncatula, triggering nodulation, a mechanism absent without the arbuscular mycorrhizal fungus. Metabolomics analysis revealed eight flavonoids unique to the compartment containing extraradical hyphae of the arbuscular mycorrhizal fungus linked to M. truncatula roots, associated with Sinorhizobium meliloti growth and nod gene expression. Rhizobia plated on the extraradical hyphae connecting two plants (the legume M. truncatula and non-legume Solanum tuberosum) by a common mycelium network, showed preference for the legume, suggesting the chemoattraction by specific signals transported by the fungus connected to the legume. Simultaneously, S. meliloti stimulated the cytoplasmic/protoplasmic flow in the hyphae, likely increasing the release of nutrients and signals. Our results highlight the importance of extraradical hyphae (i.e. the mycorrhizal pathway) of arbuscular mycorrhizal fungi for the migration of rhizobia over long distances to the roots, leading to nodulation.


Asunto(s)
Hifa , Medicago truncatula , Micorrizas , Nodulación de la Raíz de la Planta , Sinorhizobium meliloti , Simbiosis , Micorrizas/fisiología , Hifa/crecimiento & desarrollo , Medicago truncatula/microbiología , Sinorhizobium meliloti/fisiología , Sinorhizobium meliloti/genética , Microbiología del Suelo , Raíces de Plantas/microbiología , Hongos
18.
Front Plant Sci ; 15: 1384496, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38736443

RESUMEN

Arbuscular mycorrhizal fungi (AMF) are obligate symbionts that interact with the roots of most land plants. The genome of the AMF model species Rhizophagus irregularis contains hundreds of predicted small effector proteins that are secreted extracellularly but also into the plant cells to suppress plant immunity and modify plant physiology to establish a niche for growth. Here, we investigated the role of four nuclear-localized putative effectors, i.e., GLOIN707, GLOIN781, GLOIN261, and RiSP749, in mycorrhization and plant growth. We initially intended to execute the functional studies in Solanum lycopersicum, a host plant of economic interest not previously used for AMF effector biology, but extended our studies to the model host Medicago truncatula as well as the non-host Arabidopsis thaliana because of the technical advantages of working with these models. Furthermore, for three effectors, the implementation of reverse genetic tools, yeast two-hybrid screening and whole-genome transcriptome analysis revealed potential host plant nuclear targets and the downstream triggered transcriptional responses. We identified and validated a host protein interactors participating in mycorrhization in the host.S. lycopersicum and demonstrated by transcriptomics the effectors possible involvement in different molecular processes, i.e., the regulation of DNA replication, methylglyoxal detoxification, and RNA splicing. We conclude that R. irregularis nuclear-localized effector proteins may act on different pathways to modulate symbiosis and plant physiology and discuss the pros and cons of the tools used.

19.
Trends Plant Sci ; 28(9): 1045-1059, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37062674

RESUMEN

Both pathogenic and symbiotic microorganisms modulate the immune response and physiology of their host to establish a suitable niche. Key players in mediating colonization outcome are microbial effector proteins that act either inside (cytoplasmic) or outside (apoplastic) the plant cells and modify the abundance or activity of host macromolecules. We compile novel insights into the much-disputed processes of effector secretion and translocation of filamentous organisms, namely fungi and oomycetes. We report how recent studies that focus on unconventional secretion and effector structure challenge the long-standing image of effectors as conventionally secreted proteins that are translocated with the aid of primary amino acid sequence motifs. Furthermore, we emphasize the potential of diverse, unbiased, state-of-the-art proteomics approaches in the holistic characterization of fungal and oomycete effectomes.


Asunto(s)
Oomicetos , Oomicetos/metabolismo , Proteínas Fúngicas/metabolismo , Secuencias de Aminoácidos , Enfermedades de las Plantas/microbiología , Interacciones Huésped-Patógeno , Hongos/metabolismo
20.
Food Chem ; 288: 170-177, 2019 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-30902278

RESUMEN

An excess of nitrogen (N) is used in agriculture endangering the environment and food quality. One approach to circumvent this is to generate crops with a stable or even increased productivity under limited N. Here, we studied the effect of reduced N availability on potato (Solanum tuberosum) tuber yield and quality traits using five varieties: the wild Andigena and the commercial cultivars Désirée, Milva, Saturna and Alegria. Growth on limited N resulted in less tubers with a reduced weight except for Andigena. Tubers from low N-grown plants contained more starch, less sucrose and were delayed in sprouting. Some of the trait differences can be explained by changes in hormone levels between cultivars and N conditions. In general, Saturna and Alegria performed better under limited N making them excellent breeding candidates. Our results suggest that wild species more flexibly adapt to limited N, a trait lost in commercial potatoes.


Asunto(s)
Productos Agrícolas/metabolismo , Nitrógeno/metabolismo , Tubérculos de la Planta/metabolismo , Solanum tuberosum/metabolismo , Disponibilidad Biológica , Productos Agrícolas/crecimiento & desarrollo , Fenotipo , Fitomejoramiento , Solanum tuberosum/crecimiento & desarrollo , Almidón , Sacarosa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda