Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-37301203

RESUMEN

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Asunto(s)
Ataxia Cerebelosa , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/genética , Ataxias Espinocerebelosas/diagnóstico , Ataxia Cerebelosa/genética , Fenotipo , Ataxia/genética , Pruebas Genéticas , ATPasas Asociadas con Actividades Celulares Diversas/genética , Proteasas ATP-Dependientes/genética , Ubiquitina-Proteína Ligasas/genética
2.
Ann Neurol ; 95(2): 400-406, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37962377

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease is the most common autosomal dominant ataxia. In view of the development of targeted therapies, knowledge of early biomarker changes is needed. We analyzed cross-sectional data of 292 spinocerebellar ataxia type 3/Machado-Joseph disease mutation carriers. Blood concentrations of mutant ATXN3 were high before and after ataxia onset, whereas neurofilament light deviated from normal 13.3 years before onset. Pons and cerebellar white matter volumes decreased and deviated from normal 2.2 years and 0.6 years before ataxia onset. We propose a staging model of spinocerebellar ataxia type 3/Machado-Joseph disease that includes a biomarker stage characterized by objective indicators of neurodegeneration before ataxia onset. ANN NEUROL 2024;95:400-406.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/genética , Estudios Transversales , Ataxia , Biomarcadores
3.
J Neurol Neurosurg Psychiatry ; 95(7): 682-690, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38383154

RESUMEN

BACKGROUND: Spinal cord damage is a feature of many spinocerebellar ataxias (SCAs), but well-powered in vivo studies are lacking and links with disease severity and progression remain unclear. Here we characterise cervical spinal cord morphometric abnormalities in SCA1, SCA2, SCA3 and SCA6 using a large multisite MRI dataset. METHODS: Upper spinal cord (vertebrae C1-C4) cross-sectional area (CSA) and eccentricity (flattening) were assessed using MRI data from nine sites within the ENIGMA-Ataxia consortium, including 364 people with ataxic SCA, 56 individuals with preataxic SCA and 394 nonataxic controls. Correlations and subgroup analyses within the SCA cohorts were undertaken based on disease duration and ataxia severity. RESULTS: Individuals in the ataxic stage of SCA1, SCA2 and SCA3, relative to non-ataxic controls, had significantly reduced CSA and increased eccentricity at all examined levels. CSA showed large effect sizes (d>2.0) and correlated with ataxia severity (r<-0.43) and disease duration (r<-0.21). Eccentricity correlated only with ataxia severity in SCA2 (r=0.28). No significant spinal cord differences were evident in SCA6. In preataxic individuals, CSA was significantly reduced in SCA2 (d=1.6) and SCA3 (d=1.7), and the SCA2 group also showed increased eccentricity (d=1.1) relative to nonataxic controls. Subgroup analyses confirmed that CSA and eccentricity are abnormal in early disease stages in SCA1, SCA2 and SCA3. CSA declined with disease progression in all, whereas eccentricity progressed only in SCA2. CONCLUSIONS: Spinal cord abnormalities are an early and progressive feature of SCA1, SCA2 and SCA3, but not SCA6, which can be captured using quantitative MRI.


Asunto(s)
Imagen por Resonancia Magnética , Ataxias Espinocerebelosas , Humanos , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/genética , Masculino , Femenino , Persona de Mediana Edad , Adulto , Genotipo , Anciano , Médula Espinal/patología , Médula Espinal/diagnóstico por imagen , Médula Cervical/diagnóstico por imagen , Médula Cervical/patología , Índice de Severidad de la Enfermedad , Estudios de Casos y Controles
4.
Cerebellum ; 23(4): 1521-1529, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38363498

RESUMEN

Cerebellar atrophy is the neuropathological hallmark of most ataxias. Hence, quantifying the volume of the cerebellar grey and white matter is of great interest. In this study, we aim to identify volume differences in the cerebellum between spinocerebellar ataxia type 1 (SCA1), SCA3 and SCA6 as well as multiple system atrophy of cerebellar type (MSA-C). Our cross-sectional data set comprised mutation carriers of SCA1 (N=12), SCA3 (N=62), SCA6 (N=14), as well as MSA-C patients (N=16). Cerebellar volumes were obtained from T1-weighted magnetic resonance images. To compare the different atrophy patterns, we performed a z-transformation and plotted the intercept of each patient group's model at the mean of 7 years of ataxia duration as well as at the mean ataxia severity of 14 points in the SARA sum score. In addition, we plotted the extrapolation at ataxia duration of 0 years as well as 0 points in the SARA sum score. Patients with MSA-C demonstrated the most pronounced volume loss, particularly in the cerebellar white matter, at the late time intercept. Patients with SCA6 showed a pronounced volume loss in cerebellar grey matter with increasing ataxia severity compared to all other patient groups. MSA-C, SCA1 and SCA3 showed a prominent atrophy of the cerebellar white matter. Our results (i) confirmed SCA6 being considered as a pure cerebellar grey matter disease, (ii) emphasise the involvement of cerebellar white matter in the neuropathology of SCA1, SCA3 and MSA-C, and (iii) reflect the rapid clinical progression in MSA-C.


Asunto(s)
Cerebelo , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Cerebelo/patología , Cerebelo/diagnóstico por imagen , Persona de Mediana Edad , Adulto , Estudios Transversales , Anciano , Índice de Severidad de la Enfermedad , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/patología , Ataxias Espinocerebelosas/genética , Atrofia/patología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Tamaño de los Órganos , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología
5.
Neuroimage ; 264: 119703, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36349595

RESUMEN

Quantifying the volume of the cerebellum and its lobes is of profound interest in various neurodegenerative and acquired diseases. Especially for the most common spinocerebellar ataxias (SCA), for which the first antisense oligonculeotide-base gene silencing trial has recently started, there is an urgent need for quantitative, sensitive imaging markers at pre-symptomatic stages for stratification and treatment assessment. This work introduces CerebNet, a fully automated, extensively validated, deep learning method for the lobular segmentation of the cerebellum, including the separation of gray and white matter. For training, validation, and testing, T1-weighted images from 30 participants were manually annotated into cerebellar lobules and vermal sub-segments, as well as cerebellar white matter. CerebNet combines FastSurferCNN, a UNet-based 2.5D segmentation network, with extensive data augmentation, e.g. realistic non-linear deformations to increase the anatomical variety, eliminating additional preprocessing steps, such as spatial normalization or bias field correction. CerebNet demonstrates a high accuracy (on average 0.87 Dice and 1.742mm Robust Hausdorff Distance across all structures) outperforming state-of-the-art approaches. Furthermore, it shows high test-retest reliability (average ICC >0.97 on OASIS and Kirby) as well as high sensitivity to disease effects, including the pre-ataxic stage of spinocerebellar ataxia type 3 (SCA3). CerebNet is compatible with FreeSurfer and FastSurfer and can analyze a 3D volume within seconds on a consumer GPU in an end-to-end fashion, thus providing an efficient and validated solution for assessing cerebellum sub-structure volumes. We make CerebNet available as source-code (https://github.com/Deep-MI/FastSurfer).


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Reproducibilidad de los Resultados , Cerebelo/diagnóstico por imagen
6.
Mov Disord ; 37(11): 2295-2301, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36043376

RESUMEN

Measures of step variability and body sway during gait have shown to correlate with clinical ataxia severity in several cross-sectional studies. However, to serve as a valid progression biomarker, these gait measures have to prove their sensitivity to robustly capture longitudinal change, ideally within short time frames (eg, 1 year). We present the first multicenter longitudinal gait analysis study in spinocerebellar ataxias. We performed a combined cross-sectional (n = 28) and longitudinal (1-year interval, n = 17) analysis in Spinocerebellar Ataxia type 3 subjects (including seven preataxic mutation carriers). Longitudinal analysis showed significant change in gait measures between baseline and 1-year follow-up, with high effect sizes (stride length variability: P = 0.01, effect size rprb  = 0.66; lateral sway: P = 0.007, rprb  = 0.73). Sample size estimation for lateral sway indicates a required cohort size of n = 43 for detecting a 50% reduction of natural progression, compared with n = 240 for the clinical ataxia score Scale for the Assessment and Rating of Ataxia (SARA). These measures thus present promising motor biomarkers for upcoming interventional studies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Ataxia Cerebelosa , Enfermedad de Machado-Joseph , Humanos , Enfermedad de Machado-Joseph/diagnóstico , Estudios Transversales , Progresión de la Enfermedad , Marcha , Ataxia , Biomarcadores
7.
Mov Disord ; 37(9): 1850-1860, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35808813

RESUMEN

BACKGROUND: Disease severity in spinocerebellar ataxia type 3 (SCA3) is commonly defined by the Scale for the Assessment and Rating of Ataxia (SARA) sum score, but little is known about the contributions and progression patterns of individual items. OBJECTIVES: To investigate the temporal dynamics of SARA item scores in SCA3 patients and evaluate if clinical and demographic factors are differentially associated with evolution of axial and appendicular ataxia. METHODS: In a prospective, multinational cohort study involving 11 European and 2 US sites, SARA scores were determined longitudinally in 223 SCA3 patients with a follow-up assessment after 1 year. RESULTS: An increase in SARA score from 10 to 20 points was mainly driven by axial and speech items, with a markedly smaller contribution of appendicular items. Finger chase and nose-finger test scores not only showed the lowest variability at baseline, but also the least deterioration at follow-up. Compared with the full set of SARA items, omission of both tests would result in lower sample size requirements for therapeutic trials. Sex was associated with change in SARA sum score and appendicular, but not axial, subscore, with a significantly faster progression in men. Despite considerable interindividual variability, the average annual progression rate of SARA score was approximately three times higher in subjects with a disease duration over 10 years than in those within 10 years from onset. CONCLUSION: Our findings provide evidence for a difference in temporal dynamics between axial and appendicular ataxia in SCA3 patients, which will help inform the design of clinical trials and development of new (etiology-specific) outcome measures. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Ataxia , Estudios de Cohortes , Humanos , Enfermedad de Machado-Joseph/complicaciones , Masculino , Estudios Prospectivos , Índice de Severidad de la Enfermedad
8.
Mov Disord ; 36(11): 2675-2681, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34397117

RESUMEN

BACKGROUND: Spinocerebellar ataxia type 3 is a rare neurodegenerative disease caused by a CAG repeat expansion in the ataxin-3 gene. Although no curative therapy is yet available, preclinical gene-silencing approaches to reduce polyglutamine (polyQ) toxicity demonstrate promising results. In view of upcoming clinical trials, quantitative and easily accessible molecular markers are of critical importance as pharmacodynamic and particularly as target engagement markers. OBJECTIVE: We aimed at developing an ultrasensitive immunoassay to measure specifically polyQ-expanded ataxin-3 in plasma and cerebrospinal fluid (CSF). METHODS: Using the novel single molecule counting ataxin-3 immunoassay, we analyzed cross-sectional and longitudinal patient biomaterials. RESULTS: Statistical analyses revealed a correlation with clinical parameters and a stability of polyQ-expanded ataxin-3 during conversion from the pre-ataxic to the ataxic phases. CONCLUSIONS: The novel immunoassay is able to quantify polyQ-expanded ataxin-3 in plasma and CSF, whereas ataxin-3 levels in plasma correlate with disease severity. Longitudinal analyses demonstrated a high stability of polyQ-expanded ataxin-3 over a short period. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Enfermedades Neurodegenerativas , Ataxina-3/genética , Estudios Transversales , Humanos , Enfermedad de Machado-Joseph/tratamiento farmacológico , Enfermedad de Machado-Joseph/genética , Péptidos
9.
Mov Disord ; 36(10): 2273-2281, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33951232

RESUMEN

BACKGROUND: Given that new therapeutic options for spinocerebellar ataxias are on the horizon, there is a need for markers that reflect disease-related alterations, in particular, in the preataxic stage, in which clinical scales are lacking sensitivity. OBJECTIVE: The objective of this study was to quantify regional brain volumes and upper cervical spinal cord areas in spinocerebellar ataxia type 3 in vivo across the entire time course of the disease. METHODS: We applied a brain segmentation approach that included a lobular subsegmentation of the cerebellum to magnetic resonance images of 210 ataxic and 48 preataxic spinocerebellar ataxia type 3 mutation carriers and 63 healthy controls. In addition, cervical cord cross-sectional areas were determined at 2 levels. RESULTS: The metrics of cervical spinal cord segments C3 and C2, medulla oblongata, pons, and pallidum, and the cerebellar anterior lobe were reduced in preataxic mutation carriers compared with controls. Those of cervical spinal cord segments C2 and C3, medulla oblongata, pons, midbrain, cerebellar lobules crus II and X, cerebellar white matter, and pallidum were reduced in ataxic compared with nonataxic carriers. Of all metrics studied, pontine volume showed the steepest decline across the disease course. It covaried with ataxia severity, CAG repeat length, and age. The multivariate model derived from this analysis explained 46.33% of the variance of pontine volume. CONCLUSION: Regional brain and spinal cord tissue loss in spinocerebellar ataxia type 3 starts before ataxia onset. Pontine volume appears to be the most promising imaging biomarker candidate for interventional trials that aim at slowing the progression of spinocerebellar ataxia type 3. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Enfermedad de Machado-Joseph , Ataxias Espinocerebelosas , Encéfalo/diagnóstico por imagen , Cerebelo , Humanos , Ataxias Espinocerebelosas/diagnóstico por imagen , Ataxias Espinocerebelosas/genética
10.
J Neurol Neurosurg Psychiatry ; 91(8): 876-878, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32576615

RESUMEN

OBJECTIVES: To describe the combination of spinocerebellar ataxia (SCA) types 3 and 6 and sporadic inclusion body myositis (IBM). METHODS: A description of five patients with SCA type 3 and 6 who were diagnosed with IBM. We explore possible mechanisms explaining the coexistence of both diseases. RESULTS: The patients with SCA-3 (n=4) and SCA-6 (n=1) developed asymmetric muscle weakness in a pattern suggestive of IBM in the course of their disease. Based on findings of neurological examination and additional investigations (muscle ultrasound, muscle biopsy), the diagnosis of IBM was made in all patients. CONCLUSION: We report on five patients with concomitant SCA and IBM. Our cases may merely illustrate coincidental co-occurrence of IBM and SCA-3/SCA-6. However, the presence of SCA mutations could predispose to the development of IBM in some SCA patients, or, the presence of toxic aggregates and malfunctioning of cellular quality control processes in both diseases could indicate a convergence of disease mechanisms.


Asunto(s)
Enfermedad de Machado-Joseph/patología , Miositis por Cuerpos de Inclusión/patología , Ataxias Espinocerebelosas/patología , Adolescente , Adulto , Anciano , Biopsia , Femenino , Humanos , Enfermedad de Machado-Joseph/complicaciones , Masculino , Persona de Mediana Edad , Debilidad Muscular/complicaciones , Debilidad Muscular/patología , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/patología , Miositis por Cuerpos de Inclusión/complicaciones , Ataxias Espinocerebelosas/complicaciones , Ultrasonografía , Adulto Joven
11.
J Med Genet ; 56(5): 308-316, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30819809

RESUMEN

BACKGROUND: Ataxia telangiectasia (A-T) is a neurodegenerative disorder. While patients with classic A-T generally die in their 20s, some patients with variant A-T, who have residual ataxia-telangiectasia mutated (ATM) kinase activity, have a milder phenotype. We noticed two commonly occurring ATM mutations that appeared to be associated with prolonged survival and decided to study patients carrying one of these mutations. METHODS: Data were retrospectively collected from the Dutch, Italian, German and French A-T cohorts. To supplement these data, we searched the literature for patients with identical genotypes. RESULTS: This study included 35 patients who were homozygous or compound heterozygous for the ATM c.3576G>A; p.(Ser1135_Lys1192del58) mutation and 24 patients who were compound heterozygous for the ATM c.8147T>C; p.(Val2716Ala) mutation. Compared with 51 patients with classic A-T from the Dutch cohort, patients with ATM c.3576G>A had a longer survival and were less likely to develop cancer, respiratory disease or immunodeficiency. This was also true for patients with ATM c.8147T>C, who additionally became wheelchair users later in life and had fewer telangiectasias. The oldest patient with A-T reported so far was a 78-year-old patient who was compound heterozygous for ATM c.8147T>C. ATM kinase activity was demonstrated in cells from all patients tested with the ATM c.8147T>C mutant protein and only at a low level in some patients with ATM c.3576G>A. CONCLUSION: Compared with classic A-T, the presence of ATM c.3576G>A results in a milder classic phenotype. Patients with ATM c.8147T>C have a variant phenotype with prolonged survival, which in exceptional cases may approach a near-normal lifespan.


Asunto(s)
Alelos , Proteínas de la Ataxia Telangiectasia Mutada/genética , Ataxia Telangiectasia/diagnóstico , Ataxia Telangiectasia/genética , Estudios de Asociación Genética , Genotipo , Mutación , Fenotipo , Ataxia Telangiectasia/mortalidad , Humanos , Pronóstico , Sitios de Empalme de ARN , Eliminación de Secuencia , Índice de Severidad de la Enfermedad
13.
Hum Genet ; 137(5): 389-400, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29754270

RESUMEN

Unraveling the causes and pathomechanisms of progressive disorders is essential for the development of therapeutic strategies. Here, we identified heterozygous pathogenic missense variants of LMX1A in two families of Dutch origin with progressive nonsyndromic hearing impairment (HI), using whole exome sequencing. One variant, c.721G > C (p.Val241Leu), occurred de novo and is predicted to affect the homeodomain of LMX1A, which is essential for DNA binding. The second variant, c.290G > C (p.Cys97Ser), predicted to affect a zinc-binding residue of the second LIM domain that is involved in protein-protein interactions. Bi-allelic deleterious variants of Lmx1a are associated with a complex phenotype in mice, including deafness and vestibular defects, due to arrest of inner ear development. Although Lmx1a mouse mutants demonstrate neurological, skeletal, pigmentation and reproductive system abnormalities, no syndromic features were present in the participating subjects of either family. LMX1A has previously been suggested as a candidate gene for intellectual disability, but our data do not support this, as affected subjects displayed normal cognition. Large variability was observed in the age of onset (a)symmetry, severity and progression rate of HI. About half of the affected individuals displayed vestibular dysfunction and experienced symptoms thereof. The late-onset progressive phenotype and the absence of cochleovestibular malformations on computed tomography scans indicate that heterozygous defects of LMX1A do not result in severe developmental abnormalities in humans. We propose that a single LMX1A wild-type copy is sufficient for normal development but insufficient for maintenance of cochleovestibular function. Alternatively, minor cochleovestibular developmental abnormalities could eventually lead to the progressive phenotype seen in the families.


Asunto(s)
Pérdida Auditiva/genética , Heterocigoto , Proteínas con Homeodominio LIM/genética , Mutación Missense , Factores de Transcripción/genética , Enfermedades Vestibulares/genética , Adulto , Anciano , Anciano de 80 o más Años , Sustitución de Aminoácidos , Preescolar , Femenino , Humanos , Masculino , Persona de Mediana Edad
15.
Mov Disord ; 29(10): 1307-12, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-24604523

RESUMEN

BACKGROUND: Several studies have suggested that language impairment can be observed in patients with cerebellar pathology. The aim of this study was to investigate language performance in patients with spinocerebellar ataxia type 6 (SCA6). METHODS: We assessed speech and language in 29 SCA6 patients with standardized linquistic tests and correlated this with the severity of ataxia, as quantified by the Scale of Assessment and Rating of Ataxia. RESULTS: Individual patients show mild-to-moderate linguistic impairment. Linguistic abnormalities were most distinct on the writing and comprehension subtests. A strong correlation between severity of ataxia and linguistic performance was consistently found. CONCLUSIONS: This study confirms the occurrence of linguistic impairments in patients with cerebellar degenerative diseases, such as SCA6. The relation between linguistic abnormalities and severity of ataxia provides further evidence for a role of the cerebellum in linguistic processing.


Asunto(s)
Ataxia Cerebelosa/complicaciones , Trastornos del Lenguaje/etiología , Anciano , Anciano de 80 o más Años , Canales de Calcio/genética , Trastornos del Conocimiento/diagnóstico , Trastornos del Conocimiento/etiología , Femenino , Humanos , Trastornos del Lenguaje/diagnóstico , Masculino , Persona de Mediana Edad , Pruebas Neuropsicológicas , Índice de Severidad de la Enfermedad
16.
Res Sq ; 2023 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-38014351

RESUMEN

Background: Cerebellar atrophy is the neuropathological hallmark of most ataxias. Hence, quantifying the volume of the cerebellar grey and white matter is of great interest. In this study, we aim to identify volume differences in the cerebellum between spinocerebellar ataxia type 1 (SCA1), SCA3 and SCA6 as well as multiple system atrophy of cerebellar type (MSA-C). Methods: Our cross-sectional data set comprised mutation carriers of SCA1 (N=12), SCA3 (N=62), SCA6 (N=14), as well as MSA-C patients (N=16). Cerebellar volumes were obtained from T1-weighted magnetic resonance images. To compare the different atrophy patterns, we performed a z-transformation and plotted the intercept of each patient group's model at the mean of 7 years of ataxia duration as well as at the mean ataxia severity of 14 points in the SARA sum score. In addition, we plotted the extrapolation at ataxia duration of 0 years as well as 0 points in the SARA sum score. Results: Patients with MSA-C demonstrated the most pronounced volume loss, particularly in the cerebellar white matter, at the late time intercept. Patients with SCA6 showed a pronounced volume loss in cerebellar grey matter with increasing ataxia severity compared to all other patient groups. MSA-C, SCA1 and SCA3 showed a prominent atrophy of the cerebellar white matter. Conclusion: Our results (i) confirmed SCA6 being considered as a pure cerebellar gray matter disease, (ii) emphasise the involvement of cerebellar white matter in the neurophatology of SCA1, SCA3 and MSA-C, and (iii) reflect the rapid clinical progression in MSA-C.

17.
medRxiv ; 2023 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-37163081

RESUMEN

Spinocerebellar ataxia type 3/Machado-Joseph disease (SCA3) is the most common autosomal dominant ataxia. In view of the development of targeted therapies for SCA3, precise knowledge of stage-dependent fluid and MRI biomarker changes is needed. We analyzed cross-sectional data of 292 SCA3 mutation carriers including 57 pre-ataxic individuals, and 108 healthy controls from the European Spinocerebellar ataxia type 3/Machado-Joseph Disease Initiative (ESMI) cohort. Blood concentrations of mutant ATXN3 and neurofilament light (NfL) were determined, and volumes of pons, cerebellar white matter (CWM) and cerebellar grey matter (CGM) were measured on MRI. Mutant ATXN3 concentrations were high before and after ataxia onset, while NfL continuously increased and deviated from normal 11.9 years before onset. Pons and CWM volumes decreased, but the deviation from normal was only 2.0 years (pons) and 0.3 years (CWM) before ataxia onset. We propose a staging model of SCA3 that includes an initial asymptomatic carrier stage followed by the biomarker stage defined by absence of ataxia, but a significant rise of NfL. The biomarker stage leads into the ataxia stage, defined by manifest ataxia. The present analysis provides a robust framework for further studies aiming at elaboration and differentiation of the staging model of SCA3.

18.
Postgrad Med J ; 88(1041): 407-17, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22730484

RESUMEN

The clinical management of cerebellar ataxia is challenging, mainly because ataxia is a symptom of many neurological diseases. Many types of ataxia disorders are genetic and some are extremely rare. Here, the authors suggest a diagnostic approach to ataxia developed around a case of sporadic, late-onset, slowly progressive ataxia. Clinical information such as age of onset, rate of progression, family history and certain non-cerebellar features can narrow the differential diagnosis. Brain MRI is almost obligatory and may reveal valuable diagnostic clues. Having ruled out structural lesions, the two other most common diagnoses are inflammatory and degenerative (including genetic) disorders. Although only a minority of underlying diseases are treatable, there are still many options for supportive care.

19.
Pract Neurol ; 12(1): 14-24, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22258168

RESUMEN

The clinical management of cerebellar ataxia is challenging, mainly because ataxia is a symptom of many neurological diseases. Many types of ataxia disorders are genetic and some are extremely rare. Here, the authors suggest a diagnostic approach to ataxia developed around a case of sporadic, late-onset, slowly progressive ataxia. Clinical information such as age of onset, rate of progression, family history and certain non-cerebellar features can narrow the differential diagnosis. Brain MRI is almost obligatory and may reveal valuable diagnostic clues. Having ruled out structural lesions, the two other most common diagnoses are inflammatory and degenerative (including genetic) disorders. Although only a minority of underlying diseases are treatable, there are still many options for supportive care.


Asunto(s)
Manejo de la Enfermedad , Degeneraciones Espinocerebelosas/diagnóstico , Degeneraciones Espinocerebelosas/terapia , Edad de Inicio , Encéfalo/patología , Estudios de Seguimiento , Pruebas Genéticas , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Examen Físico , Degeneraciones Espinocerebelosas/etiología , Degeneraciones Espinocerebelosas/genética
20.
Mov Disord ; 26(5): 792-800, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21370272

RESUMEN

Autosomal dominant spinocerebellar ataxias (SCAs) can present with a large variety of noncerebellar symptoms, including movement disorders. In fact, movement disorders are frequent in many of the various SCA subtypes, and they can be the presenting, dominant, or even isolated disease feature. When combined with cerebellar ataxia, the occurrence of a specific movement disorder can provide a clue toward the underlying genotype. There are reasons to believe that for some coexisting movement disorders, the cerebellar pathology itself is the culprit, for example, in the case of cortical myoclonus and perhaps dystonia. However, movement disorders in SCAs are more likely related to extracerebellar pathology, and imaging and neuropathological data indeed show involvement of other parts of the motor system (substantia nigra, striatum, pallidum, motor cortex) in some SCA subtypes. When confronted with a patient with an isolated movement disorder, that is, without ataxia, there is currently no reason to routinely screen for SCA gene mutations, the only exceptions being SCA2 in autosomal dominant parkinsonism (particularly in Asian patients) and SCA17 in the case of a Huntington's disease-like presentation without an HTT mutation.


Asunto(s)
Trastornos del Movimiento/etiología , Ataxias Espinocerebelosas/complicaciones , Humanos , Trastornos del Movimiento/clasificación , Ataxias Espinocerebelosas/diagnóstico
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda