Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
1.
J Neurooncol ; 148(2): 291-297, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32350779

RESUMEN

PURPOSE: PD-1 Immunotherapy is integral in treating multiple cancers, but has been associated with neurological adverse events (nAEs). Our study was aimed at identifying the clinical spectrum of nAEs associated with pembrolizumab and nivolumab. METHODS: We performed an IRB approved single-center retrospective cohort study on patients receiving either pembrolizumab or nivolumab. Patients that developed nAEs within 12 months of treatment were identified. Descriptive statistics were conducted, and differences between groups were analyzed by the Chi-square or t test method. RESULTS: In total, 649 patients were identified. Seventeen patients (2.6%) developed nAEs. Eight of those were on pembrolizumab and nine were on nivolumab. Average age was 62.1 years. Ten were males and 7 were females. Most patients had melanoma (6, 35.3%). Patients who developed nAEs more frequently had intracranial lesions at initiation of anti PD-1 therapy compared to those who did not develop nAEs (76.5% vs 27.8%; p-value < 0.001). Fifteen patients (88.2%) permanently stopped PD-1 therapy. In 8 patients, treatment termination resolved symptoms attributed to immune checkpoint blockade. The majority of patients developed grade 3 or 4 nAEs (10 patients, 58.8%), and required hospitalization (11 patients, 64.7%). Eight patients died for nAEs referable causes. CONCLUSION: Pembrolizumab and nivolumab are associated with the development of nAEs associated with increased risk of permanent discontinuation of treatment, hospitalization, and death. Melanoma patients might be at a particularly high risk of such side effects. Future studies are still required to better assess which patients benefit most from such therapies, while minimizing the risk of complications.


Asunto(s)
Anticuerpos Monoclonales Humanizados/efectos adversos , Antineoplásicos Inmunológicos/administración & dosificación , Inhibidores de Puntos de Control Inmunológico/efectos adversos , Neoplasias/terapia , Enfermedades del Sistema Nervioso/inducido químicamente , Nivolumab/efectos adversos , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Femenino , Humanos , Masculino , Persona de Mediana Edad , Neoplasias/complicaciones , Neoplasias/inmunología , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
2.
Nano Lett ; 19(10): 6955-6963, 2019 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-31552740

RESUMEN

Magnetogenetics is a new field that leverages genetically encoded proteins and protein assemblies that are sensitive to magnetic fields to study and manipulate cell behavior. Theoretical studies show that many proposed magnetogenetic proteins do not contain enough iron to generate substantial magnetic forces. Here, we have engineered a genetically encoded ferritin-containing protein crystal that grows inside mammalian cells. Each of these crystals contains more than 10 million ferritin subunits and is capable of mineralizing substantial amounts of iron. When isolated from cells and loaded with iron in vitro, these crystals generate magnetic forces that are 9 orders of magnitude larger than the forces from the single ferritin cages used in previous studies. These protein crystals are attracted to an applied magnetic field and move toward magnets even when internalized into cells. While additional studies are needed to realize the full potential of magnetogenetics, these results demonstrate the feasibility of engineering protein assemblies for magnetic sensing.


Asunto(s)
Ferritinas/química , Imanes/química , Animales , Cristalización , Ferritinas/genética , Células HEK293 , Humanos , Hierro/química , Campos Magnéticos , Ratones , Ingeniería de Proteínas , Células RAW 264.7
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda