Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nucleic Acids Res ; 51(6): 2586-2601, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36840712

RESUMEN

Progress in RNA metabolism and function studies relies largely on molecular imaging systems, including those comprising a fluorogenic dye and an aptamer-based fluorescence-activating tag. G4 aptamers of the Mango family, typically combined with a duplex/hairpin scaffold, activate the fluorescence of a green light-emitting dye TO1-biotin and hold great promise for intracellular RNA tracking. Here, we report a new Mango-based imaging platform. Its key advantages are the tunability of spectral properties and applicability for visualization of small RNA molecules that require minimal tag size. The former advantage is due to an expanded (green-to-red-emitting) palette of TO1-inspired fluorogenic dyes, and the truncated duplex scaffold ensures the latter. To illustrate the applicability of the improved platform, we tagged Mycobacterium tuberculosis sncRNA with the shortened aptamer-scaffold tag. Then, we visualized it in bacteria and bacteria-infected macrophages using the new red light-emitting Mango-activated dye.


Asunto(s)
Colorantes Fluorescentes , Macrófagos , Mangifera , ARN Pequeño no Traducido , Aptámeros de Nucleótidos/genética , Fluorescencia , Colorantes Fluorescentes/metabolismo , Mangifera/genética , Mangifera/metabolismo , ARN/metabolismo , Macrófagos/microbiología
2.
J Biol Chem ; 299(4): 104585, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889586

RESUMEN

Emfourin (M4in) is a protein metalloprotease inhibitor recently discovered in the bacterium Serratia proteamaculans and the prototype of a new family of protein protease inhibitors with an unknown mechanism of action. Protealysin-like proteases (PLPs) of the thermolysin family are natural targets of emfourin-like inhibitors widespread in bacteria and known in archaea. The available data indicate the involvement of PLPs in interbacterial interaction as well as bacterial interaction with other organisms and likely in pathogenesis. Arguably, emfourin-like inhibitors participate in the regulation of bacterial pathogenesis by controlling PLP activity. Here, we determined the 3D structure of M4in using solution NMR spectroscopy. The obtained structure demonstrated no significant similarity to known protein structures. This structure was used to model the M4in-enzyme complex and the complex model was verified by small-angle X-ray scattering. Based on the model analysis, we propose a molecular mechanism for the inhibitor, which was confirmed by site-directed mutagenesis. We show that two spatially close flexible loop regions are critical for the inhibitor-protease interaction. One region includes aspartic acid forming a coordination bond with catalytic Zn2+ of the enzyme and the second region carries hydrophobic amino acids interacting with protease substrate binding sites. Such an active site structure corresponds to the noncanonical inhibition mechanism. This is the first demonstration of such a mechanism for protein inhibitors of thermolysin family metalloproteases, which puts forward M4in as a new basis for the development of antibacterial agents relying on selective inhibition of prominent factors of bacterial pathogenesis belonging to this family.


Asunto(s)
Proteínas Bacterianas , Metaloproteasas , Termolisina/metabolismo , Proteínas Bacterianas/metabolismo , Metaloproteasas/genética , Espectroscopía de Resonancia Magnética , Péptido Hidrolasas
3.
Nucleic Acids Res ; 50(6): 3056-3069, 2022 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-35234900

RESUMEN

This work investigated the structural and biological properties of DNA containing 7,8-dihydro-8-oxo-1,N6-ethenoadenine (oxo-ϵA), a non-natural synthetic base that combines structural features of two naturally occurring DNA lesions (7,8-dihydro-8-oxoadenine and 1,N6-ethenoadenine). UV-, CD-, NMR spectroscopies and molecular modeling of DNA duplexes revealed that oxo-ϵA adopts the non-canonical syn conformation (χ = 65º) and fits very well among surrounding residues without inducing major distortions in local helical architecture. The adduct remarkably mimics the natural base thymine. When considered as an adenine-derived DNA lesion, oxo-ϵA was >99% mutagenic in living cells, causing predominantly A→T transversion mutations in Escherichia coli. The adduct in a single-stranded vector was not repaired by base excision repair enzymes (MutM and MutY glycosylases) or the AlkB dioxygenase and did not detectably affect the efficacy of DNA replication in vivo. When the biological and structural data are viewed together, it is likely that the nearly exclusive syn conformation and thymine mimicry of oxo-ϵA defines the selectivity of base pairing in vitro and in vivo, resulting in lesion pairing with A during replication. The base pairing properties of oxo-ϵA, its strong fluorescence and its invisibility to enzymatic repair systems in vivo are features that are sought in novel DNA-based probes and modulators of gene expression.


Asunto(s)
Escherichia coli , Timina , Emparejamiento Base , ADN/genética , Reparación del ADN , Escherichia coli/genética
4.
Biochemistry (Mosc) ; 88(9): 1356-1367, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37770402

RESUMEN

Entomopathogenic bacteria of the genus Photorhabdus secrete protease S (PrtS), which is considered a virulence factor. We found that in the Photorhabdus genomes, immediately after the prtS genes, there are genes that encode small hypothetical proteins homologous to emfourin, a recently discovered protein inhibitor of metalloproteases. The gene of emfourin-like inhibitor from Photorhabdus laumondii subsp. laumondii TT01 was cloned and expressed in Escherichia coli cells. The recombinant protein, named photorin (Phin), was purified by metal-chelate affinity and gel permeation chromatography and characterized. It has been established that Phin is a monomer and inhibits activity of protealysin and thermolysin, which, similar to PrtS, belong to the M4 peptidase family. Inhibition constants were 1.0 ± 0.3 and 10 ± 2 µM, respectively. It was also demonstrated that Phin is able to suppress proteolytic activity of P. laumondii culture fluid (half-maximal inhibition concentration 3.9 ± 0.3 nM). Polyclonal antibodies to Phin were obtained, and it was shown by immunoblotting that P. laumondii cells produce Phin. Thus, the prtS genes in entomopathogenic bacteria of the genus Photorhabdus are colocalized with the genes of emfourin-like inhibitors, which probably regulate activity of the enzyme during infection. Strict regulation of the activity of proteolytic enzymes is essential for functioning of all living systems. At the same time, the principles of regulation of protease activity by protein inhibitors remain poorly understood. Bacterial protease-inhibitor pairs, such as the PrtS and Phin pair, are promising models for in vivo studies of these principles. Bacteria of the genus Photorhabdus have a complex life cycle with multiple hosts, being both nematode symbionts and powerful insect pathogens. This provides a unique opportunity to use the PrtS and Phin pair as a model for studying the principles of protease activity regulation by proteinaceous inhibitors in the context of bacterial interactions with different types of hosts.


Asunto(s)
Antiinfecciosos , Photorhabdus , Animales , Photorhabdus/genética , Photorhabdus/metabolismo , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/metabolismo , Insectos , Antivirales/metabolismo
5.
Int J Mol Sci ; 23(23)2022 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-36498942

RESUMEN

NTnC-like green fluorescent genetically encoded calcium indicators (GECIs) with two calcium ion binding sites were constructed using the insertion of truncated troponin C (TnC) from Opsanus tau into green fluorescent proteins (GFPs). These GECIs are small proteins containing the N- and C-termini of GFP; they exert a limited effect on the cellular free calcium ion concentration; and in contrast to calmodulin-based calcium indicators they lack undesired interactions with intracellular proteins in neurons. The available TnC-based NTnC or YTnC GECIs had either an inverted response and high brightness but a limited dynamic range or a positive response and fast kinetics in neurons but lower brightness and an enhanced but still limited dF/F dynamic range. Here, we solved the crystal structure of NTnC at 2.5 Å resolution. Based on this structure, we developed positive NTnC2 and inverted iNTnC2 GECIs with a large dF/F dynamic range in vitro but very slow rise and decay kinetics in neurons. To overcome their slow responsiveness, we swapped TnC from O. tau in NTnC2 with truncated troponin C proteins from the muscles of fast animals, namely, the falcon, hummingbird, cheetah, bat, rattlesnake, and ant, and then optimized the resulting constructs using directed molecular evolution. Characterization of the engineered variants using purified proteins, mammalian cells, and neuronal cultures revealed cNTnC GECI with truncated TnC from Calypte anna (hummingbird) to have the largest dF/F fluorescence response and fast dissociation kinetics in neuronal cultures. In addition, based on the insertion of truncated TnCs from fast animals into YTnC2, we developed fYTnC2 GECI with TnC from Falco peregrinus (falcon). The purified proteins cNTnC and fYTnC2 had 8- and 6-fold higher molecular brightness and 7- and 6-fold larger dF/F responses to the increase in Ca2+ ion concentration than YTnC, respectively. cNTnC GECI was also 4-fold more photostable than YTnC and fYTnC2 GECIs. Finally, we assessed the developed GECIs in primary mouse neuronal cultures stimulated with an external electric field; in these conditions, cNTnC had a 2.4-fold higher dF/F fluorescence response than YTnC and fYTnC2 and was the same or slightly slower (1.4-fold) than fYTnC2 and YTnC in the rise and decay half-times, respectively.


Asunto(s)
Calcio , Troponina C , Animales , Calcio/metabolismo , Señalización del Calcio , Calmodulina/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Indicadores y Reactivos , Troponina C/genética , Troponina C/química , Troponina C/metabolismo
6.
Analyst ; 146(14): 4436-4440, 2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34132709

RESUMEN

The lack of high throughput screening (HTS) techniques for small molecules that stabilize DNA iMs limits their development as perspective drug candidates. Here we showed that fluorescence monitoring for probing the effects of ligands on the iM stability using the FAM-BHQ1 pair provides incorrect results due to additional dye-related interactions. We developed an alternative system with fluorescent phenoxazine pseudonucleotides in loops that do not alter iM unfolding. At the same time, the fluorescence of phenoxazine residues is sensitive to iM unfolding that enables accurate evaluation of ligand-induced changes of iM stability. Our results provide the basis for new approaches for HTS of iM ligands.


Asunto(s)
ADN , Oxazinas , ADN/genética , Fluorescencia , Ligandos , Motivos de Nucleótidos
7.
Org Biomol Chem ; 18(31): 6147-6154, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32719836

RESUMEN

G-quadruplexes (G4) represent one class of non-canonical secondary nucleic acid structures that are currently regarded as promising and attractive targets for anti-cancer, anti-viral and antibacterial therapy. Herein, we probe a new i-clamp-inspired phenoxazine scaffold for designing G4-stabilizing ligands. The length of the protonated aminoalkyl tethers ('arms') of the phenoxazine-based ligand was optimized in silico. Two double-armed ligands differing in the relative orientation of their arms and one single-armed ligand were synthesized. The two-armed ligands significantly enhanced the thermal stability of the G-quadruplex structures (increasing the melting temperature by up to 20 °C) and displayed G4 selectivity over duplex DNA. The ligands look promising for biological studies and the phenoxazine scaffold could be a starting point for designing new G4-interacting compounds.

8.
Nucleic Acids Res ; 46(6): 2751-2764, 2018 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-29474573

RESUMEN

Non-canonical DNA structures are widely used for regulation of gene expression, in DNA nanotechnology and for the development of new DNA-based sensors. I-motifs (iMs) are two intercalated parallel duplexes that are held together by hemiprotonated C-C base pairs. Previously, iMs were used as an accurate sensor for intracellular pH measurements. However, iM stability is moderate, which in turn limits its in vivo applications. Here, we report the rational design of a new substituted phenoxazine 2'-deoxynucleotide (i-clamp) for iM stabilization. This residue contains a C8-aminopropyl tether that interacts with the phosphate group within the neighboring chain without compromising base pairing. We studied the influence of i-clamp on pH-dependent stability for intra- and intermolecular iM structures and found the optimal positions for modification. Two i-clamps on opposite strands provide thermal stabilization up to 10-11°C at a pH of 5.8. Thus, we developed a new modification that shows significant iM-stabilizing effect both at strongly and mildly acidic pH and increases iM transition pH values. i-Clamp can be used for tuning iM-based pH probes or assembling extra stable iM structures for various applications.


Asunto(s)
ADN/química , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Oxazinas/química , Emparejamiento Base , ADN/síntesis química , Concentración de Iones de Hidrógeno , Sustancias Intercalantes/química , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Compuestos Organofosforados/química , Termodinámica
9.
Nucleic Acids Res ; 46(17): 8978-8992, 2018 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-30107602

RESUMEN

We examined the assembly of DNA G-quadruplexes (G4s) into higher-order structures using atomic force microscopy, optical and electrophoretic methods, NMR spectroscopy and molecular modeling. Our results suggest that parallel blunt-ended G4s with single-nucleotide or modified loops may form different types of multimers, ranging from stacks of intramolecular structures and/or interlocked dimers and trimers to wires. Decreasing the annealing rate and increasing salt or oligonucleotide concentrations shifted the equilibrium from intramolecular G4s to higher-order structures. Control antiparallel and hybrid G4s demonstrated no polymorphism or aggregation in our experiments. The modification that mimics abasic sites (1',2'-dideoxyribose residues) in loops enhanced the oligomerization/multimerization of both the 2-tetrad and 3-tetrad G4 motifs. Our results shed light on the rules that govern G4 rearrangements. Gaining control over G4 folding enables the harnessing of the full potential of such structures for guided assembly of supramolecular DNA structures for nanotechnology.


Asunto(s)
Desoxirribosa/análogos & derivados , G-Cuádruplex , Pliegue del ARN , Emparejamiento Base , Desoxirribosa/química , Modelos Moleculares , Motivos de Nucleótidos , Mutación Puntual , Cloruro de Potasio
10.
Sensors (Basel) ; 20(3)2020 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-32050425

RESUMEN

Aptasensors became popular instruments in bioanalytical chemistry and molecular biology. To increase specificity, perspective signaling elements in aptasensors can be separated into a G-quadruplex (G4) part and a free fluorescent dye that lights up upon binding to the G4 part. However, current systems are limited by relatively low enhancement of fluorescence upon dye binding. Here, we added duplex modules to G4 structures, which supposedly cause the formation of a dye-binding cavity between two modules. Screening of multiple synthetic GFP chromophore analogues and variation of the duplex module resulted in the selection of dyes that light up after complex formation with two-module structures and their RNA analogues by up to 20 times compared to parent G4s. We demonstrated that the short duplex part in TBA25 is preferable for fluorescence light up in comparison to parent TBA15 molecule as well as TBA31 and TBA63 stabilized by longer duplexes. Duplex part of TBA25 may be partially unfolded and has reduced rigidity, which might facilitate optimal dye positioning in the joint between G4 and the duplex. We demonstrated dye enhancement after binding to modified TBA, LTR-III, and Tel23a G4 structures and propose that such architecture of short duplex-G4 signaling elements will enforce the development of improved aptasensors.


Asunto(s)
Colorantes Fluorescentes/química , G-Cuádruplex , Proteínas Fluorescentes Verdes/química , Fluorescencia , Conformación de Ácido Nucleico , Desnaturalización de Ácido Nucleico , Oligonucleótidos/química , Temperatura de Transición
11.
Int J Mol Sci ; 21(8)2020 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-32344594

RESUMEN

Genetically encoded calcium indicators (GECIs) have become a widespread tool for the visualization of neuronal activity. As compared to popular GCaMP GECIs, the FGCaMP indicator benefits from calmodulin and M13-peptide from the fungi Aspergillus niger and Aspergillus fumigatus, which prevent its interaction with the intracellular environment. However, FGCaMP exhibits a two-phase fluorescence behavior with the variation of calcium ion concentration, has moderate sensitivity in neurons (as compared to the GCaMP6s indicator), and has not been fully characterized in vitro and in vivo. To address these limitations, we developed an enhanced version of FGCaMP, called FGCaMP7. FGCaMP7 preserves the ratiometric phenotype of FGCaMP, with a 3.1-fold larger ratiometric dynamic range in vitro. FGCaMP7 demonstrates 2.7- and 8.7-fold greater photostability compared to mEGFP and mTagBFP2 fluorescent proteins in vitro, respectively. The ratiometric response of FGCaMP7 is 1.6- and 1.4-fold higher, compared to the intensiometric response of GCaMP6s, in non-stimulated and stimulated neuronal cultures, respectively. We reveal the inertness of FGCaMP7 to the intracellular environment of HeLa cells using its truncated version with a deleted M13-like peptide; in contrast to the similarly truncated variant of GCaMP6s. We characterize the crystal structure of the parental FGCaMP indicator. Finally, we test the in vivo performance of FGCaMP7 in mouse brain using a two-photon microscope and an NVista miniscope; and in zebrafish using two-color ratiometric confocal imaging.


Asunto(s)
Calcio/metabolismo , Expresión Génica , Imagen Molecular , Neuronas/metabolismo , Potenciales de Acción , Animales , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Hongos/genética , Genes Reporteros , Células HeLa , Humanos , Ratones , Microscopía Fluorescente , Modelos Moleculares , Imagen Molecular/métodos , Neuronas/citología , Conformación Proteica , Ingeniería de Proteínas , Relación Estructura-Actividad , Corteza Visual/fisiología
12.
Int J Mol Sci ; 21(5)2020 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-32121243

RESUMEN

Green fluorescent genetically encoded calcium indicators (GECIs) are the most popular tool for visualization of calcium dynamics in vivo. However, most of them are based on the EGFP protein and have similar molecular brightnesses. The NTnC indicator, which is composed of the mNeonGreen fluorescent protein with the insertion of troponin C, has higher brightness as compared to EGFP-based GECIs, but shows a limited inverted response with an ΔF/F of 1. By insertion of a calmodulin/M13-peptide pair into the mNeonGreen protein, we developed a green GECI called NCaMP7. In vitro, NCaMP7 showed positive response with an ΔF/F of 27 and high affinity (Kd of 125 nM) to calcium ions. NCaMP7 demonstrated a 1.7-fold higher brightness and similar calcium-association/dissociation dynamics compared to the standard GCaMP6s GECI in vitro. According to fluorescence recovery after photobleaching (FRAP) experiments, the NCaMP7 design partially prevented interactions of NCaMP7 with the intracellular environment. The NCaMP7 crystal structure was obtained at 1.75 Å resolution to uncover the molecular basis of its calcium ions sensitivity. The NCaMP7 indicator retained a high and fast response when expressed in cultured HeLa and neuronal cells. Finally, we successfully utilized the NCaMP7 indicator for in vivo visualization of grating-evoked and place-dependent neuronal activity in the visual cortex and the hippocampus of mice using a two-photon microscope and an NVista miniscope, respectively.


Asunto(s)
Calcio/metabolismo , Técnicas Genéticas , Proteínas Fluorescentes Verdes/metabolismo , Animales , Conducta Animal , Células Cultivadas , Cristalografía por Rayos X , Fluorometría , Células HeLa , Hipocampo/metabolismo , Humanos , Indicadores y Reactivos , Cinética , Ratones Endogámicos C57BL , Modelos Moleculares , Neuronas/metabolismo , Fotones , Corteza Visual/fisiología , Vigilia
13.
Bioorg Med Chem ; 25(14): 3597-3605, 2017 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-28396019

RESUMEN

Nowadays modified oligonucleotides are widely used in diagnostics and as novel therapeutics. Introduction of modified or unnatural residues into oligonucleotides allows fine tuning of their binding properties to complementary nucleic acids and leads to improved stability both in vitro and in vivo. Previously it was demonstrated that insertion of phenoxazine nucleotides with various groups in C9-position into oligonucleotides leads to a significant increase of duplex stability with complementary DNA and RNA. Here the synthesis of a novel G-clamp nucleoside analogue (G8AE-clamp) bearing 2-aminoethyl tether at C8-atom is presented. Introduction of such modified residues into oligonucleotides lead to enhanced specificity of duplex formation towards complementary DNA and RNA targets with increased thermal and 3'-exonuclease stability. According to CD-spectroscopy studies G8AE-clamp does not substantially disrupt helix geometry. Primers containing G8AE-clamp demonstrated superior sensitivity in qPCR detection of dsRNA of Kemerovo virus in comparison to native oligonucleotides.


Asunto(s)
Guanosina/análogos & derivados , Oligonucleótidos/síntesis química , Orbivirus/genética , Oxazinas/química , ARN Viral/metabolismo , Dicroismo Circular , Exonucleasas/metabolismo , Guanosina/metabolismo , Simulación de Dinámica Molecular , Conformación de Ácido Nucleico , Hibridación de Ácido Nucleico , Oligonucleótidos/química , ARN Bicatenario/análisis , ARN Bicatenario/genética , ARN Bicatenario/metabolismo , ARN Viral/genética , Reacción en Cadena en Tiempo Real de la Polimerasa
14.
Eur J Med Chem ; 268: 116222, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387333

RESUMEN

G-quadruplex (G4) ligands attract considerable attention as potential anticancer therapeutics. In this study we proposed an original scheme for synthesis of azole-fused anthraquinones and prepared a series of G4 ligands carrying amino- or guanidinoalkylamino side chains. The heterocyclic core and structure of the terminal groups strongly affect on binding to G4-forming oligonucleotides, cellular accumulation and antitumor potency of compounds. In particular, thiadiazole- and selenadiazole- but not triazole-based ligands inhibit the proliferation of tumor cells (e.g. K562 leukemia) and stabilize primarily telomeric and c-MYC G4s. Anthraselenadiazole derivative 11a showed a good affinity to c-MYC G4 in vitro and down-regulated expression of c-MYC oncogene in cellular conditions. Further studies revealed that anthraselenadiazole 11a provoked cell cycle arrest and apoptosis in a dose- and time-dependent manner inhibiting K562 cells growth. Taken together, this work gives a valuable example that the closely related heterocycles may cause a significant difference in biological properties of G4 ligands.


Asunto(s)
Antineoplásicos , G-Cuádruplex , Antineoplásicos/química , Antraquinonas/química , Triazoles/farmacología , Proliferación Celular , Puntos de Control del Ciclo Celular , Ligandos
15.
J Org Chem ; 78(12): 5964-9, 2013 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-23724994

RESUMEN

New oligonucleotide analogues with triazole internucleotide linkages were synthesized, and their hybridization properties were studied. The analogues demonstrated DNA binding affinities similar to those of unmodified oligonucleotides. The modification was shown to protect the oligonucleotides from nuclease hydrolysis. The modified oligonucleotides were tested as PCR primers. Modifications remote from the 3'-terminus were tolerated by polymerases. Our results suggest that these new oligonucleotide analogues are among the most promising triazole DNA mimics characterized to date.


Asunto(s)
ADN/química , Sondas Moleculares/síntesis química , Oligonucleótidos/química , Triazoles/química , Desoxirribonucleasas/química , Hidrólisis , Imitación Molecular , Desnaturalización de Ácido Nucleico , Hibridación de Ácido Nucleico , Reacción en Cadena de la Polimerasa
16.
FEBS Open Bio ; 13(11): 2047-2060, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37650870

RESUMEN

Genetically encoded calcium indicators based on truncated troponin C are attractive probes for calcium imaging due to their relatively small molecular size and twofold reduced calcium ion buffering. However, the best-suited members of this family, YTnC and cNTnC, suffer from low molecular brightness, limited dynamic range, and/or poor sensitivity to calcium transients in neurons. To overcome these limitations, we developed an enhanced version of YTnC, named YTnC2. Compared with YTnC, YTnC2 had 5.7-fold higher molecular brightness and 6.4-fold increased dynamic range in vitro. YTnC2 was successfully used to reveal calcium transients in the cytosol and in the lumen of mitochondria of both mammalian cells and cultured neurons. Finally, we obtained and analyzed the crystal structure of the fluorescent domain of the YTnC2 mutant.


Asunto(s)
Calcio , Troponina C , Humanos , Animales , Troponina C/genética , Troponina C/química , Troponina C/metabolismo , Calcio/metabolismo , Proteínas Fluorescentes Verdes/química , Células HeLa , Neuronas/metabolismo , Mamíferos
17.
ACS Sens ; 8(2): 619-629, 2023 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-36662613

RESUMEN

DNA-intercalated motifs (iMs) are facile scaffolds for the design of various pH-responsive nanomachines, including biocompatible pH sensors. First, DNA pH sensors relied on complex intermolecular scaffolds. Here, we used a simple unimolecular dual-labeled iM scaffold and minimized it by replacing the redundant loop nucleosides with abasic or alkyl linkers. These modifications improved the thermal stability of the iM and increased the rates of its pH-induced conformational transitions. The best effects were obtained upon the replacement of all three native loops with short and flexible linkers, such as the propyl one. The resulting sensor showed a pH transition value equal to 6.9 ± 0.1 and responded rapidly to minor acidification (tau1/2 <1 s for 7.2 → 6.6 pH jump). We demonstrated the applicability of this sensor for pH measurements in the nuclei of human lung adenocarcinoma cells (pH = 7.4 ± 0.2) and immortalized embryonic kidney cells (pH = 7.0 ± 0.2). The sensor stained diffusely the nucleoplasm and piled up in interchromatin granules. These findings highlight the prospects of iMs in the studies of normal and pathological pH-dependent processes in the nucleus, including the formation of biomolecular condensates.


Asunto(s)
Núcleo Celular , ADN , Humanos , Concentración de Iones de Hidrógeno , ADN/química , Cuerpos Nucleares
18.
Biochimie ; 201: 43-54, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35817132

RESUMEN

G4-stabilizing ligands are now being considered as anticancer, antiviral and antibacterial agents. Phenoxazine is a promising scaffold for the development of G4 ligands. Here, we profiled two known phenoxazine-based nucleoside analogs and five new nucleoside and non-nucleoside derivatives against G4 targets from telomere repeats and the KIT promoter region. Leading new derivatives exhibited remarkably high G4-stabilizing effects (comparable or superior to the effects of the commonly used selective G4 ligands PDS and NMM) and selectivity toward G4s over duplex (superior to BRACO-19). All phenoxazine-based ligands inhibited cellular metabolic activity. The phenoxazine derivatives were particularly toxic for lung adenocarcinoma cells A549' and human liver cancer cells HepG2 (CC50 of the nucleoside analogues in the nanomolar range), but also affected breast cancer cells MCF7, as well as immortalized fibroblasts VA13 and embryonic kidney cells HEK293t (CC50 in the micromolar range). Importantly, the CC50 values varied mostly in accordance with G4-binding affinities and G4-stabilizing effects, and the phenoxazine derivatives localized in the cell nuclei, which corroborates G4-mediated mechanisms of action.


Asunto(s)
G-Cuádruplex , Antibacterianos , Antivirales , Células HEK293 , Humanos , Ligandos , Nucleósidos , Oxazinas , Relación Estructura-Actividad , Telómero
19.
Biosens Bioelectron ; 175: 112864, 2021 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-33309217

RESUMEN

We report the design of robust sensors for measuring intracellular pH, based on the native DNA i-motifs (iMs) found in neurodegeneration- or carcinogenesis-related genes. Those iMs appear to be genomic regulatory elements and might modulate transcription in response to pH stimuli. Given their intrinsic sensitivity to minor pH changes within the physiological range, such noncanonical DNA structures can be used as sensor core elements without additional modules other than fluorescent labels or quenchers. We focused on several iMs that exhibited fast folding/unfolding kinetics. Using stopped-flow techniques and FRET-melting/annealing assays, we confirmed that the rates of temperature-driven iM-ssDNA transitions correlate with the rates of the pH-driven transitions. Thus, we propose FRET-based hysteresis analysis as an express method for selecting sensors with desired kinetic characteristics. For the leading fast-response sensor, we optimized the labelling scheme and performed intracellular calibration. Unlike the commonly used small-molecule pH indicators, that sensor was transferred efficiently to cell nuclei. Considering its favourable kinetic characteristics, the sensor can be used for monitoring proton dynamics in the nucleus. These results argue that the 'genome-inspired' design is a productive approach to the development of biocompatible molecular tools.


Asunto(s)
Técnicas Biosensibles , ADN/genética , Genómica , Concentración de Iones de Hidrógeno , Cinética , Motivos de Nucleótidos , Termodinámica
20.
Front Microbiol ; 12: 753760, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34867875

RESUMEN

The structure and dynamics of bacterial nucleoids play important roles in regulating gene expression. Bacteria of class Mollicutes and, in particular, mycoplasmas feature extremely reduced genomes. They lack multiple structural proteins of the nucleoid, as well as regulators of gene expression. We studied the organization of Mycoplasma gallisepticum nucleoids in the stationary and exponential growth phases at the structural and protein levels. The growth phase transition results in the structural reorganization of M. gallisepticum nucleoid. In particular, it undergoes condensation and changes in the protein content. The observed changes corroborate with the previously identified global rearrangement of the transcriptional landscape in this bacterium during the growth phase transition. In addition, we identified that the glycolytic enzyme enolase functions as a nucleoid structural protein in this bacterium. It is capable of non-specific DNA binding and can form fibril-like complexes with DNA.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda