Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Antimicrob Agents Chemother ; 58(8): 4384-91, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24841258

RESUMEN

Pseudomonas aeruginosa is a major cause of hospital-acquired infections, particularly in mechanically ventilated patients, and it is the leading cause of death in cystic fibrosis patients. A key virulence factor associated with disease severity is the P. aeruginosa type III secretion system (T3SS), which injects bacterial toxins directly into the cytoplasm of host cells. The PcrV protein, located at the tip of the T3SS injectisome complex, is required for T3SS function and is a well-validated target in animal models of immunoprophylactic strategies targeting P. aeruginosa. In an effort to identify a highly potent and protective monoclonal antibody (MAb) that inhibits the T3SS, we generated and characterized a panel of novel anti-PcrV MAbs. Interestingly, some MAbs exhibiting potent inhibition of T3SS in vitro failed to provide protection in a mouse model of P. aeruginosa infection, suggesting that effective in vivo inhibition of T3SS with anti-PcrV MAbs is epitope dependent. V2L2MD, while not the most potent MAb as assessed by in vitro cytotoxicity inhibition assays, provided strong prophylactic protection in several murine infection models and a postinfection therapeutic model. V2L2MD mediated significantly (P < 0.0001) better in vivo protection than that provided by a comparator antibody, MAb166, a well-characterized anti-PcrV MAb and the progenitor of a clinical candidate, KB001-A. The results described here support further development of a V2L2MD-containing immunotherapeutic and may suggest even greater potential than was previously recognized for the prevention and treatment of P. aeruginosa infections in high-risk populations.


Asunto(s)
Anticuerpos Antibacterianos/administración & dosificación , Anticuerpos Monoclonales/administración & dosificación , Antígenos Bacterianos/inmunología , Toxinas Bacterianas/inmunología , Inmunización Pasiva , Proteínas Citotóxicas Formadoras de Poros/inmunología , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/efectos de los fármacos , Animales , Anticuerpos Antibacterianos/biosíntesis , Anticuerpos Monoclonales/biosíntesis , Antígenos Bacterianos/química , Sistemas de Secreción Bacterianos/inmunología , Toxinas Bacterianas/química , Pruebas Inmunológicas de Citotoxicidad , Modelos Animales de Enfermedad , Relación Dosis-Respuesta Inmunológica , Epítopos/química , Epítopos/inmunología , Humanos , Fragmentos Fab de Inmunoglobulinas/administración & dosificación , Inyecciones Intraperitoneales , Inyecciones Intravenosas , Ratones , Proteínas Citotóxicas Formadoras de Poros/química , Infecciones por Pseudomonas/inmunología , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/mortalidad , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/inmunología , Análisis de Supervivencia
2.
MAbs ; 15(1): 2152526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36476037

RESUMEN

To combat the COVID-19 pandemic, potential therapies have been developed and moved into clinical trials at an unprecedented pace. Some of the most promising therapies are neutralizing antibodies against SARS-CoV-2. In order to maximize the therapeutic effectiveness of such neutralizing antibodies, Fc engineering to modulate effector functions and to extend half-life is desirable. However, it is critical that Fc engineering does not negatively impact the developability properties of the antibodies, as these properties play a key role in ensuring rapid development, successful manufacturing, and improved overall chances of clinical success. In this study, we describe the biophysical characterization of a panel of Fc engineered ("TM-YTE") SARS-CoV-2 neutralizing antibodies, the same Fc modifications as those found in AstraZeneca's Evusheld (AZD7442; tixagevimab and cilgavimab), in which the TM modification (L234F/L235E/P331S) reduce binding to FcγR and C1q and the YTE modification (M252Y/S254T/T256E) extends serum half-life. We have previously shown that combining both the TM and YTE Fc modifications can reduce the thermal stability of the CH2 domain and possibly lead to developability challenges. Here we show, using a diverse panel of TM-YTE SARS-CoV-2 neutralizing antibodies, that despite lowering the thermal stability of the Fc CH2 domain, the TM-YTE platform does not have any inherent developability liabilities and shows an in vivo pharmacokinetic profile in human FcRn transgenic mice similar to the well-characterized YTE platform. The TM-YTE is therefore a developable, effector function reduced, half-life extended antibody platform.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Ratones , Humanos , SARS-CoV-2/genética , Pandemias , Anticuerpos Neutralizantes
3.
PLoS One ; 14(1): e0211236, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30682117

RESUMEN

Interleukin-21 (IL-21), a member of the common cytokine receptor γ chain (γc) family, is secreted by CD4+ T cells and natural killer T cells and induces effector function through interactions with the IL-21 receptor (IL-21R)/γc complex expressed on both immune and non-immune cells. Numerous studies suggest that IL-21 plays a significant role in autoimmune disorders. Therapeutic intervention to disrupt the IL-21/IL-21R/γc interaction and inhibit subsequent downstream signal transduction could offer a treatment paradigm for these diseases. Potent neutralizing antibodies reported in the literature were generated after extensive immunizations with human IL-21 alone and in combination with various adjuvants. To circumvent the laborious method of antibody generation while targeting a conserved functional epitope, we designed a novel alternating-antigen immunization strategy utilizing both human and cynomolgus monkey (cyno) IL-21. Despite the high degree of homology between human and cyno IL-21, our alternating-immunization strategy elicited higher antibody titers and more potent neutralizing hybridomas in mice than did the immunization with human IL-21 antigen alone. The lead hybridoma clone was humanized by grafting the murine complementarity-determining regions onto human germline framework templates, using a unique rational design. The final humanized and engineered antibody, MEDI7169, encodes only one murine residue at the variable heavy/light-chain interface, retains the sub-picomolar affinity for IL-21, specifically inhibits IL-21/IL-21R-mediated signaling events and is currently under clinical development as a potential therapeutic agent for autoimmune diseases. This study provides experimental evidence of the immune system's potential to recognize and respond to shared epitopes of antigens from distinct species, and presents a generally applicable, novel method for the rapid generation of exceptional therapeutic antibodies using the hybridoma platform.


Asunto(s)
Anticuerpos Monoclonales Humanizados/metabolismo , Anticuerpos Neutralizantes/metabolismo , Interleucinas/inmunología , Macaca fascicularis/inmunología , Animales , Linfocitos T CD4-Positivos/inmunología , Modelos Animales de Enfermedad , Humanos , Hibridomas/inmunología , Inmunización , Ratones
4.
Clin Chim Acta ; 464: 228-235, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27751727

RESUMEN

BACKGROUND: Periostin is being investigated as a potential biomarker for T-helper-2 (Th2)-driven asthma or eosinophilic inflammation and may help to identify patients more likely to benefit from interleukin-13-targeted treatments. We report the development and analytic performance of the investigational use only ARCHITECT Periostin Immunoassay, a new automated assay developed to detect serum periostin concentrations. METHODS: We assessed assay performance in terms of precision, sensitivity, linearity, interference from classical immunoassay interferents and representatives of common asthma medications, specimen handling, and isoform reactivity. The assay was also used to assess the biological variability of serum periostin concentrations in samples from healthy volunteers and from subjects with uncontrolled asthma (the intended use population). RESULTS: The percentage CVs for 5-day total precision, assessed using two instruments, was <6% across 2 controls and one serum-based panel. Limit of quantitation was 4ng/mL (dilution adjusted concentration), suiting the needs for this application. Dilution analysis yielded linear results and no endogenous sample or drug interferences were observed. All known periostin isoforms expressed in the mature human lung were detected by the assay. CONCLUSION: Our studies provide support that the ARCHITECT Periostin Immunoassay is a reliable and robust test for measuring serum periostin concentrations.


Asunto(s)
Análisis Químico de la Sangre/métodos , Moléculas de Adhesión Celular/sangre , Inmunoensayo/métodos , Adolescente , Asma/sangre , Automatización , Biomarcadores/sangre , Recolección de Muestras de Sangre , Estudios de Casos y Controles , Femenino , Humanos , Límite de Detección , Modelos Lineales , Masculino , Temperatura
5.
MAbs ; 8(5): 916-27, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27049174

RESUMEN

Monoclonal antibody isolation directly from circulating human B cells is a powerful tool to delineate humoral responses to pathological conditions and discover antibody therapeutics. We have developed a platform aimed at improving the efficiencies of B cell selection and V gene recovery. Here, memory B cells are activated and amplified using Epstein-Barr virus infection, co-cultured with CHO-muCD40L cells, and then assessed by functional screenings. An in vitro transcription and translation (IVTT) approach was used to analyze variable (V) genes recovered from each B cell sample and identify the relevant heavy/light chain pair(s). We achieved efficient amplification and activation of memory B cells, and eliminated the need to: 1) seed B cells at clonal level (≤1 cell/well) or perform limited dilution cloning; 2) immortalize B cells; or 3) assemble V genes into an IgG expression vector to confirm the relevant heavy/light chain pairing. Cross-reactive antibodies targeting a conserved epitope on influenza A hemagglutinin were successfully isolated from a healthy donor. In-depth analysis of the isolated antibodies suggested their potential uses as anti-influenza A antibody therapeutics and uncovered a distinct affinity maturation pathway. Importantly, our results showed that cognate heavy/light chain pairings contributed to both the expression level and binding abilities of our newly isolated VH1-69 family, influenza A neutralizing antibodies, contrasting with previous observations that light chains do not significantly contribute to the function of this group of antibodies. Our results further suggest the potential use of the IVTT as a powerful antibody developability assessment tool.


Asunto(s)
Anticuerpos Neutralizantes/aislamiento & purificación , Anticuerpos Antivirales/aislamiento & purificación , Linfocitos B/inmunología , Técnicas Inmunológicas/métodos , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Memoria Inmunológica/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda