Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Curr Microbiol ; 79(2): 57, 2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-34982247

RESUMEN

Leptospirosis is a worldwide zoonosis and a serious public health threat in tropical and subtropical areas. The etiologic agents of leptospirosis are pathogenic spirochetes from the genus Leptospira. In severe cases, patients develop a pulmonary hemorrhage that is associated with high fatality rates. Several animal models were established for leptospirosis studies, such as rodents, dogs, and monkeys. Although useful to study the relationship among Leptospira and its hosts, the animal models still exhibit economic and ethical limitation reasons and do not fully represent the human infection. As an attempt to bridge the gap between animal studies and clinical information from patients, we established a three-dimensional (3-D) human lung cell culture for Leptospira infection. We show that Leptospira is able to efficiently infect the cell lung spheroids and also to infiltrate in deeper areas of the cell aggregates. The ability to infect the 3-D lung cell aggregates was time-dependent. The 3-D spheroids infection occurred up to 120 h in studies with two serovars, Canicola and Copenhageni. We standardized the number of bacteria in the initial inoculum for infection of the spheroids and we also propose two alternative culture media conditions. This new approach was validated by assessing the expression of three genes of Leptospira related to virulence and motility. The transcripts of these genes increased in both culture conditions, however, in higher rates and earlier times in the 3-D culture. We also assessed the production of chemokines by the 3-D spheroids before and after Leptospira infection, confirming induction of two of them, mainly in the 3-D spheroids. Chemokine CCL2 was expressed only in the 3-D cell culture. Increasing of this chemokine was observed previously in infected animal models. This new approach provides an opportunity to study the interaction of Leptospira with the human lung epithelium in vitro.


Asunto(s)
Técnicas de Cultivo Tridimensional de Células , Leptospira , Leptospirosis , Animales , Humanos , Leptospirosis/veterinaria , Pulmón , Virulencia
2.
Int J Med Microbiol ; 309(2): 116-129, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30638770

RESUMEN

Leptospirosis is a severe zoonosis caused by pathogenic species of the genus Leptospira. This work focuses on a hypothetical protein of unknown function, encoded by the gene LIC13259, and predicted to be a surface protein, widely distributed among pathogenic leptospiral strain. The gene was amplified from L. interrogans serovar Copenhageni, strain Fiocruz L1-130, cloned and the protein expressed using Escherichia coli as a host system. Immunofluorescence assay showed that the protein is surface-exposed. The recombinant protein LIC13259 (rLIC13259) has the ability to interact with the extracellular matrix (ECM) laminin, in a dose-dependent manner but saturation was not reach. The rLIC13259 protein is a plasminogen (PLG)-binding protein, generating plasmin, in the presence of urokinase PLG-activator uPA. The recombinant protein is able to mediate the binding to human purified terminal complement route vitronectin, C7, C8 and C9, and to recruit and interact with these components from normal human serum (NHS). These interactions are dose-dependent on NHS increased concentration. The binding of rLIC13259 to C8 and vitronectin was slight and pronounced inhibited in the presence of increasing heparin concentration, respectively, suggesting that the interaction with vitronectin occurs via heparin domain. Most interesting, the interaction of rLIC13259 with C9 protein was capable of preventing C9 polymerization, suggesting that the membrane attack complex (MAC) formation was inhibited. Thus, we tentatively assign the coding sequence (CDS) LIC13259, previously annotated as unknown function, as a novel protein that may play an important role in the host's invasion and immune evasion processes, contributing to the establishment of the leptospiral infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Proteínas Portadoras/metabolismo , Proteínas del Sistema Complemento/metabolismo , Leptospira interrogans/metabolismo , Plasminógeno/metabolismo , Vitronectina/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Femenino , Expresión Génica , Humanos , Laminina/metabolismo , Leptospira interrogans/genética , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos BALB C , Unión Proteica , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
3.
Mol Cell Probes ; 37: 12-21, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29108931

RESUMEN

Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Leptospira interrogans/genética , Leptospirosis/microbiología , Lipoproteínas/metabolismo , Plasminógeno/metabolismo , Animales , Anticuerpos Antibacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/genética , Proteínas de la Membrana Bacteriana Externa/inmunología , Matriz Extracelular/inmunología , Femenino , Humanos , Leptospira interrogans/inmunología , Leptospirosis/inmunología , Lipoproteínas/genética , Lipoproteínas/inmunología , Ratones , Ratones Endogámicos BALB C , Plasminógeno/genética , Plasminógeno/inmunología , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/metabolismo , Suero/inmunología
4.
Mem Inst Oswaldo Cruz ; 113(5): e170444, 2018 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-29538491

RESUMEN

Leptospira inadai is classified as a species of the Leptospira intermediate group that has been poorly studied due to its apparent insignificance to human and animal health. Nevertheless, over the last two decades the species has been described in human cases in India and in carrier animals in Ecuador. Here, we present the first identification and genomic characterisation of L. inadai serogroup Lyme isolated from captured rodent in Brazil. Even though the M34/99 strain was not pathogenic for hamsters, it was able to establish renal colonisation. The M34/99 strain presented high similarity with L. inadai serogroup Lyme human reference indicating that animal strain could also infect humans, although it does not represent high risk of severe disease. An extrachromosomal sequence was also identified in M34/99 strain and presented high identity with previously described L. inadai phage LinZ_10, suggesting that phage-like extrachromosomal sequence may be another feature of this understudied species.


Asunto(s)
ADN Bacteriano/genética , Genoma Bacteriano/genética , Leptospira/genética , Animales , Brasil , Cricetinae , Humanos , Leptospira/clasificación , Leptospira/patogenicidad , Ratas , Especificidad de la Especie
5.
Mem Inst Oswaldo Cruz ; 113(2): 126-129, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29236931

RESUMEN

Leptospira interrogans serovar Canicola is one of the most important pathogenic serovars for the maintenance of urban leptospirosis. Even though it is considered highly adapted to dogs, serovar Canicola infection has already been described in other animals and even a few human cases. Here, we present the genomic characterisation of two Brazilian L. interrogans serovar Canicola strains isolated from slaughtered sows (L0-3 and L0-4) and their comparison with human strain Fiocruz LV133. It was observed that the porcine serovar Canicola strains present the genetic machinery to cause human infection and, therefore, represent a higher risk to public health. Both human and porcine serovar Canicola isolates also presented sequences with high identity to the Chinese serovar Canicola published plasmids pGui1 and pGui2. The plasmids identification in the Brazilian and Chinese serovar Canicola strains suggest that extra-chromosomal elements are one more feature of this serovar that was previously unnoticed.


Asunto(s)
Genoma Bacteriano , Leptospira interrogans serovar canicola/genética , Animales , Brasil , Humanos , Leptospira interrogans serovar canicola/aislamiento & purificación , Tipificación Molecular , Porcinos/microbiología
6.
Microbiology (Reading) ; 163(1): 37-51, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28198346

RESUMEN

We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of Leptospira interrogans, annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using Escherichia coli. Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for Leptospiral-surface adhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in Leptospira has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host -pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during L. interrogans infection.


Asunto(s)
Adhesinas Bacterianas/genética , Adhesión Bacteriana/fisiología , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Factor sigma/genética , Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Animales , Anticuerpos Antibacterianos/inmunología , Membrana Celular/metabolismo , Femenino , Fibrinolisina/metabolismo , Genoma Bacteriano/genética , Humanos , Leptospirosis/microbiología , Ratones , Ratones Endogámicos BALB C , Plasminógeno/metabolismo
7.
Int J Med Microbiol ; 307(6): 297-310, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28600123

RESUMEN

Pathogenic Leptopira is the etiological agent of leptospirosis, the most widespread zoonotic infection in the world. The disease represents a major public health problem, especially in tropical countries. The present work focused on two hypothetical proteins of unknown function, encoded by the genes LIC13059 and LIC10879, and predicted to be surface-exposed proteins. The genes were cloned and the proteins expressed using E. coli as a host system. We report that the recombinant proteins interacted with extracellular matrix (ECM) laminin, in a dose-dependent fashion and are novel potential adhesins. The recombinant proteins were called Lsa25.6 (rLIC13059) and Lsa16 (rLIC10879), for Leptospiral surface adhesins, followed by the respective molecular masses. The proteins attached to plasminogen (PLG), generating plasmin, in the presence of PLG-activator uPA. Both proteins bind to fibrinogen (Fg), but only Lsa25.6 inhibited fibrin clotting by thrombin-catalyzed reaction. Moreover, Lsa16 interacts with the mammalian cell receptor E-cadherin, and could contribute to bacterial attachment to epithelial cells. The proteins were recognized by confirmed leptospirosis serum samples, suggesting that they are expressed during infection. The corresponding leptospiral proteins are surface exposed based on proteinase K accessibility assay, being LIC10879 most probably exposed in its dimer form. The data of this study extend the spectrum of surface-exposed proteins of L. interrogans and indicate a possible role of the originally annotated hypothetical proteins in infection processes.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Adhesión Bacteriana , Coagulación Sanguínea , Leptospira interrogans/metabolismo , Leptospirosis/microbiología , Adhesinas Bacterianas/genética , Animales , Cadherinas/metabolismo , Clonación Molecular , Simulación por Computador , Femenino , Fibrina/metabolismo , Fibrinógeno/metabolismo , Humanos , Laminina/metabolismo , Leptospira interrogans/genética , Leptospirosis/sangre , Ratones , Ratones Endogámicos BALB C , Plasminógeno/metabolismo , Unión Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Microb Pathog ; 112: 182-189, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28963011

RESUMEN

Leptospirosis is a severe worldwide zoonotic disease caused by pathogenic Leptospira spp. It has been demonstrated that pathogenic leptospires are resistant to the bactericidal activity of normal human serum while saprophytic strains are susceptible. Pathogenic strains have the ability to bind soluble complement regulators and these activities are thought to contribute to bacterial immune evasion. One strategy used by some pathogens to evade the complement cascade, which is not well explored, is to block the terminal pathway. We have, thus, examined whether leptospires are able to interact with components of the terminal complement pathway. ELISA screening using anti-leptospires serum has shown that the pathogenic, virulent strain L. interrogans L1-130 can bind to immobilized human C8 (1 µg). However, virulent and saprophyte L. biflexa strains showed the ability to interact with C8 and C9, when these components were employed at physiological concentration (50 µg/mL), but the virulent strain seemed more competent. Lsa23, a putative leptospiral adhesin only present in pathogenic strains, interacts with C8 and C9 in a dose-dependent mode, suggesting that this protein could mediate the binding of virulent Leptospira with these components. To our knowledge, this is the first work reporting the binding of Leptospira to C8 and C9 terminal complement components, suggesting that the inhibition of this pathway is part of the strategy used by leptospires to evade the innate immunity.


Asunto(s)
Proteínas Bacterianas/inmunología , Proteínas del Sistema Complemento/inmunología , Proteínas del Sistema Complemento/metabolismo , Leptospira interrogans/inmunología , Leptospira interrogans/metabolismo , Leptospirosis/inmunología , Dominios y Motivos de Interacción de Proteínas , Adhesinas Bacterianas , Proteínas Bacterianas/genética , Proteínas Portadoras/inmunología , Proteínas Portadoras/metabolismo , Complemento C7/metabolismo , Complemento C8/metabolismo , Complemento C9/metabolismo , Vectores Genéticos , Humanos , Evasión Inmune , Inmunidad Innata , Leptospira interrogans/genética , Leptospira interrogans/patogenicidad , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Proteínas Recombinantes
9.
Microbiology (Reading) ; 162(2): 295-308, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26614523

RESUMEN

It has been reported that pathogenic Leptospira are resistant to normal human serum (NHS) due to their ability to evade the complement immune system by interacting with factor H (FH) and C4b-binding protein (C4BP) regulators. Moreover, plasmin generation on the leptospiral surface diminishes C3b and IgG deposition, decreasing opsonophagocytosis by immune competent cells. We have previously reported that Lsa23 (LIC11360) is a multipurpose protein capable of binding purified extracellular matrix molecules, FH, C4BP and plasminogen (PLG)/plasmin in the presence of PLG activators. In this work, we provide further evidence that Lsa23 is located at the bacterial surface by using immunofluorescence microscopy. We show that Lsa23 has the ability to acquire FH, C4BP and PLG from NHS, and use these interactions to evade innate immunity. The binding with the complement regulators FH and C4BP preserves factor I (FI) activity, leading to C3b and C4b degradation products, respectively. C3b and C4b alpha-chain cleavage was also observed when Lsa23 bound to PLG generating plasmin, an effect blocked by the protease inhibitor aprotinin. Lsa23 also inhibited lytic activity by NHS mediated by both classical and alternative complement pathways. Thus, Lsa23 has the ability to block both pathways of the complement system, and may help pathogenic Leptospira to escape complement-mediated clearance in human hosts. Indeed, NHS treated with Lsa23 confers a partial serum resistance phenotype to Leptospira biflexa, whereas blocking this protein with anti-Lsa23 renders pathogenic L. interrogans more susceptible to complement-mediated killing. Thus, Lsa23 is a multifunctional protein involved in many pathways, featuring C4b cleavage by plasmin, knowledge that may help in the development of preventive approaches to intervene with human complement escape by this versatile pathogen.


Asunto(s)
Proteínas Bacterianas/inmunología , Complemento C3b/metabolismo , Proteína de Unión al Complemento C4b/metabolismo , Complemento C4b/metabolismo , Factor H de Complemento/metabolismo , Leptospira interrogans/inmunología , Proteínas de la Membrana/inmunología , Plasminógeno/metabolismo , Fibrinolisina/metabolismo , Humanos , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Microscopía Fluorescente , Fagocitosis/inmunología
10.
Microbiology (Reading) ; 162(8): 1407-1421, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27260249

RESUMEN

Pathogenic bacteria of the genus Leptospira are the causative agent of leptospirosis, an emergent infectious disease that affects humans and animals worldwide. Severe forms of the disease in humans include jaundice, multiple organ failure and intense haemorrhage. Up to now, mechanisms associated with the haemorrhage foci are poorly understood. We report in this work that, despite the low levels of antithrombin III in convalescent human serum samples, virulent, culture-attenuated and saprophyte strains of Leptospira are unable to bind and/or degrade this thrombin inhibitor, suggesting an indirect mechanism of pathogenesis. Lower levels of prothrombin were found in serum samples at the onset and convalescent phase of the disease when compared to normal human sera. The concomitant decreased levels of antithrombin III and prothrombin suggest a process of stimulated coagulation, which is corroborated by the increase of prothrombin fragment F1+2 in the serum samples. Data obtained with hamsters experimentally infected with virulent Leptospira interrogans serovars Kennewicki and Canicola strongly point out that haemorrhage is correlated with decreased levels of thrombin inhibitors and prothrombin. Activated coagulation might lead to an overconsumption of coagulation factors ultimately leading to bleeding and organ failure.


Asunto(s)
Antitrombina III/metabolismo , Trastornos de la Coagulación Sanguínea/microbiología , Hemorragia/microbiología , Leptospirosis/microbiología , Leptospirosis/patología , Fragmentos de Péptidos/sangre , Precursores de Proteínas/sangre , Animales , Adhesión Bacteriana/fisiología , Coagulación Sanguínea/fisiología , Cricetinae , Humanos , Leptospira/metabolismo , Masculino , Protrombina
11.
Microbiology (Reading) ; 161(Pt 4): 851-64, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25627443

RESUMEN

Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease of human and veterinary concern. The quest for novel antigens that could mediate host-pathogen interactions is being pursued. Owing to their location, these antigens have the potential to elicit numerous activities, including immune response and adhesion. This study focuses on a hypothetical protein of Leptospira, encoded by the gene LIC11089, and its three derived fragments: the N-terminal, intermediate and C terminus regions. The gene coding for the full-length protein and fragments was cloned and expressed in Escherichia coli BL21(SI) strain by using the expression vector pAE. The recombinant protein and fragments tagged with hexahistidine at the N terminus were purified by metal affinity chromatography. The leptospiral full-length protein, named Lsa32 (leptospiral surface adhesin, 32 kDa), adheres to laminin, with the C terminus region being responsible for this interaction. Lsa32 binds to plasminogen in a dose-dependent fashion, generating plasmin when an activator is provided. Moreover, antibodies present in leptospirosis serum samples were able to recognize Lsa32. Lsa32 is most likely a new surface protein of Leptospira, as revealed by proteinase K susceptibility. Altogether, our data suggest that this multifaceted protein is expressed during infection and may play a role in host-L. interrogans interactions.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Laminina/metabolismo , Leptospira interrogans/genética , Leptospira interrogans/metabolismo , Leptospirosis/microbiología , Plasminógeno/metabolismo , Adhesión Bacteriana , Clonación Molecular , Biología Computacional , Matriz Extracelular , Expresión Génica , Genes Bacterianos , Unión Proteica , Transporte de Proteínas , Transcripción Genética
12.
Microbiology (Reading) ; 160(Pt 1): 149-164, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24162609

RESUMEN

This work shows the production and characterization of two novel putative lipoproteins encoded by the genes LIC10645 and LIC10731 identified in the genome sequences of Leptospira interrogans. In silico conservation analysis indicated that the proteins are well conserved among pathogenic leptospiral serovars and species. Recombinant proteins were obtained in Escherichia coli BL21(DE3) Star pLysS strain, purified by metal-affinity chromatography, and used for characterization and immunological evaluations. Recombinant proteins were capable of eliciting a combination of humoral and cellular immune responses in animal models, and could be recognized by antibodies present in human serum samples. The recombinant proteins Lsa44 and Lsa45 were able to bind laminin, and were named Lsa44 and Lsa45 for leptospiral surface adhesins of 44 and 45 kDa, respectively. The attachment to laminin was dose-responsive with KD values of 108.21 and 250.38 nM for Lsa44 and Lsa45, respectively. Moreover, these proteins interact with plasminogen (PLG) with KD values of 53.56 and 36.80 nM, respectively. PLG bound to the recombinant proteins could be converted to plasmin (PLA) in the presence of an activator. Cellular localization assays suggested that the Lsa44 and Lsa45 were surface-exposed. These are versatile proteins capable of interacting with laminin and PLG/PLA, and hence could mediate bacterial adhesion and contribute to tissue penetration.


Asunto(s)
Adhesinas Bacterianas/inmunología , Adhesinas Bacterianas/metabolismo , Antígenos Bacterianos/inmunología , Antígenos Bacterianos/metabolismo , Laminina/metabolismo , Leptospira interrogans/inmunología , Leptospira interrogans/metabolismo , Adhesinas Bacterianas/genética , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Cromatografía de Afinidad , Secuencia Conservada , Escherichia coli/genética , Humanos , Cinética , Leptospira interrogans/genética , Leucocitos Mononucleares/inmunología , Lipoproteínas/genética , Lipoproteínas/inmunología , Lipoproteínas/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/inmunología , Proteínas de la Membrana/metabolismo , Plasminógeno/metabolismo , Unión Proteica , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación
13.
Infect Immun ; 81(5): 1764-74, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23478319

RESUMEN

We have recently reported the ability of Leptospira to capture plasminogen (PLG) and generate plasmin (PLA) bound on the microbial surface in the presence of exogenous activators. In this work, we examined the effects of leptospiral PLG binding for active penetration through the endothelial cell barrier and activation. The results indicate that leptospires with PLG association or PLA activation have enhanced migration activity through human umbilical vein endothelial cell (HUVEC) monolayers compared with untreated bacteria. Leptospira cells coated with PLG were capable of stimulating the expression of PLG activators by HUVECs. Moreover, leptospires endowed with PLG or PLA promoted transcriptional upregulation matrix metalloprotease 9 (MMP-9). Serum samples from patients with confirmed leptospirosis showed higher levels of PLG activators and total MMP-9 than serum samples from normal (healthy) subjects. The highest level of PLG activators and total MMP-9 was detected with microscopic agglutination test (MAT)-negative serum samples, suggesting that this proteolytic activity stimulation occurs at the early stage of the disease. Furthermore, a gelatin zymography profile obtained for MMPs with serum samples from patients with leptospirosis appears to be specific to leptospiral infection because serum samples from patients with unrelated infectious diseases produced no similar degradation bands. Altogether, the data suggest that the Leptospira-associated PLG or PLA might represent a mechanism that contributes to bacterial penetration of endothelial cells through an activation cascade of events that enhances the proteolytic capability of the organism. To our knowledge, this is the first proteolytic activity associated with leptospiral pathogenesis described to date.


Asunto(s)
Células Endoteliales/enzimología , Leptospira interrogans/patogenicidad , Leptospirosis/enzimología , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/metabolismo , Proteolisis , Ensayo de Inmunoadsorción Enzimática , Fibrinolisina/metabolismo , Interacciones Huésped-Patógeno , Humanos , Leptospira interrogans/metabolismo , Leptospirosis/metabolismo , Plasminógeno/metabolismo , Activadores Plasminogénicos/sangre , Venas Umbilicales/citología
14.
Biochem Biophys Res Commun ; 431(2): 342-7, 2013 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-23291183

RESUMEN

Leptospira interrogans causes leptospirosis, one of the most common zoonotic diseases in the world. This pathogenic spirochete is able to bind to extracellular matrix, to express virulent factors and to cause host death. Until now, there is no effective human vaccine for the disease. Shotgun phage display genomic libraries of L. interrogans were constructed and used for in vivo biopanning in hamsters and screened for ligands able to bind to LLC-PK1 epithelial cells. In both panning procedures, clones coding for the putative lipoprotein LIC12976 were identified and, in order to confirm its adhesin activity, a recombinant protein was produced in Escherichia coli and showed to interact with A31 fibroblasts, LLC-PK1 and Vero epithelial cells in vitro. Moreover, rLIC12976 was shown to bind to laminin, indicating an adhesin function. This protein was also detected in extracts of L. interrogans from different serovars and it was found to be conserved among pathogenic leptospires. Further, the protein was tested as vaccine candidate and immunization of hamsters with LIC12976 did not confer protection against a lethal challenge with the homologous L. interrogans serovar Copenhageni. Nevertheless, LIC12976 seems to act as an adhesin, and may be important for the host-pathogen interaction, so that its study can contribute to the understanding of the virulence mechanisms in pathogenic leptospires.


Asunto(s)
Adhesinas Bacterianas/genética , Interacciones Huésped-Patógeno , Leptospira interrogans/patogenicidad , Leptospirosis/microbiología , Lipoproteínas/genética , Adhesinas Bacterianas/fisiología , Animales , Chlorocebus aethiops , Cricetinae , Humanos , Laminina/metabolismo , Leptospira interrogans/genética , Lipoproteínas/fisiología , Ratones , Biblioteca de Péptidos , Células Vero
15.
Curr Microbiol ; 66(2): 106-9, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23064970

RESUMEN

Leptospirosis is an important global zoonotic disease caused by pathogenic Leptospira spp. species. Swine leptospirosis has a major economic impact because pigs are sources of animal protein and by-products. The signs of swine leptospirosis are abortion, stillbirth, birth of weak or ill piglets, appearing 14-60 days after infection. The reference method for diagnosis of leptospirosis is the microscopic agglutination test (MAT), in which serum samples are reacted with live antigen suspensions of leptospiral serovars. However, MAT is laborious and time consuming as a diagnostic procedure when dealing with a large number of samples; therefore, efforts are being made to develop novel, sensitive, and specific diagnostic tests for leptospirosis. In this study, a recombinant LipL32 based on enzyme-linked immunosorbent assay (rLipL32/ELISA) was evaluated as a screening test for the detection of pathogenic leptospiral-specific antibodies. A total of 86 swine serum samples tested by MAT were used to develop rLipL32/ELISA. Compared to positive and negative sera tested by MAT, rLipL32/ELISA showed 100 % sensitivity, 85.1 % specificity, and 91.86 % accuracy. No positive reaction for other bacterial diseases (enzootic pneumonia and brucellosis) was observed. The rLipL32/ELISA reported in this study is a specific, sensitive, and convenient test for the detection of antibodies against swine leptospiral infection and can be used as a rapid screening test in epidemiological surveys.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa , Técnicas Bacteriológicas/métodos , Leptospira/inmunología , Leptospirosis/veterinaria , Lipoproteínas , Enfermedades de los Porcinos/diagnóstico , Medicina Veterinaria/métodos , Animales , Anticuerpos Antibacterianos/sangre , Antígenos Bacterianos/genética , Proteínas de la Membrana Bacteriana Externa/genética , Ensayo de Inmunoadsorción Enzimática/métodos , Leptospira/genética , Leptospirosis/diagnóstico , Lipoproteínas/genética , Tamizaje Masivo/métodos , Proteínas Recombinantes/genética , Sensibilidad y Especificidad , Pruebas Serológicas , Porcinos
16.
Trop Anim Health Prod ; 45(1): 117-21, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22610538

RESUMEN

The identification of Leptospira clinical isolates through genotyping and serotyping, besides the recognition of its reservoirs, are important tools for understanding the epidemiology of leptospirosis, and they are also keys for identifying new species and serovars. Fourteen clinical isolates from animals were characterized by means of single enzyme amplified length polymorphism, variable number of tandem repeat analysis, pulsed field gel electrophoresis, and serotyping. All isolates were identified as Leptospira interrogans, serovar Canicola. Infections by this serovar occur in urban regions, where dogs represent the main maintenance hosts, whereas bovine and swine may act as reservoirs of serovar Canicola in rural areas. Both urban and rural aspects of leptospirosis, and the role of domestic animals as maintenance hosts, cannot be neglected in developing and developed countries.


Asunto(s)
Bovinos/microbiología , Reservorios de Enfermedades/veterinaria , Perros/microbiología , Leptospira interrogans serovar canicola/genética , Leptospirosis/epidemiología , Porcinos/microbiología , Pruebas de Aglutinación/veterinaria , Análisis del Polimorfismo de Longitud de Fragmentos Amplificados/veterinaria , Animales , Brasil/epidemiología , Electroforesis en Gel de Campo Pulsado/veterinaria , Genotipo , Leptospirosis/microbiología , Repeticiones de Minisatélite/genética , Serotipificación/veterinaria
17.
Infect Immun ; 80(10): 3679-92, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22802342

RESUMEN

Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical ß-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/metabolismo , Leptospira/metabolismo , Leptospirosis/microbiología , Plasminógeno/metabolismo , Animales , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/genética , Sitios de Unión , Clonación Molecular , Cricetinae , Escherichia coli/metabolismo , Fibrinolisina/genética , Fibrinolisina/metabolismo , Fibronectinas/metabolismo , Regulación Bacteriana de la Expresión Génica/fisiología , Humanos , Laminina/metabolismo , Leptospira/genética , Leptospirosis/inmunología , Masculino , Mesocricetus , Ratones , Ratones Endogámicos BALB C , Filogenia , Unión Proteica , Conformación Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
BMC Microbiol ; 12: 50, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22463075

RESUMEN

BACKGROUND: Leptospirosis is considered a re-emerging infectious disease caused by pathogenic spirochaetes of the genus Leptospira. Pathogenic leptospires have the ability to survive and disseminate to multiple organs after penetrating the host. Leptospires were shown to express surface proteins that interact with the extracellular matrix (ECM) and to plasminogen (PLG). This study examined the interaction of two putative leptospiral proteins with laminin, collagen Type I, collagen Type IV, cellular fibronectin, plasma fibronectin, PLG, factor H and C4bp. RESULTS: We show that two leptospiral proteins encoded by LIC11834 and LIC12253 genes interact with laminin in a dose - dependent and saturable mode, with dissociation equilibrium constants (KD) of 367.5 and 415.4 nM, respectively. These proteins were named Lsa33 and Lsa25 (Leptospiral surface adhesin) for LIC11834 and LIC12253, respectively. Metaperiodate - treated laminin reduced Lsa25 - laminin interaction, suggesting that sugar moieties of this ligand participate in this interaction. The Lsa33 is also PLG - binding receptor, with a KD of 23.53 nM, capable of generating plasmin in the presence of an activator. Although in a weak manner, both proteins interact with C4bp, a regulator of complement classical route. In silico analysis together with proteinase K and immunoflorescence data suggest that these proteins might be surface exposed. Moreover, the recombinant proteins partially inhibited leptospiral adherence to immobilized laminin and PLG. CONCLUSIONS: We believe that these multifunctional proteins have the potential to participate in the interaction of leptospires to hosts by mediating adhesion and by helping the bacteria to escape the immune system and to overcome tissue barriers. To our knowledge, Lsa33 is the first leptospiral protein described to date with the capability of binding laminin, PLG and C4bp in vitro.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteína de Unión al Complemento C4b/metabolismo , Laminina/metabolismo , Leptospira interrogans/metabolismo , Plasminógeno/metabolismo , Animales , ADN Bacteriano/genética , Femenino , Interacciones Huésped-Patógeno , Humanos , Leptospira interrogans/genética , Ratones , Ratones Endogámicos BALB C , Unión Proteica , Proteínas Recombinantes/metabolismo
19.
Microb Pathog ; 53(3-4): 125-34, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22732096

RESUMEN

Pathogenic Leptospira is the etiological agent of leptospirosis, a life-threatening disease that affects populations worldwide. Surface proteins have the potential to promote several activities, including adhesion. This work aimed to study the leptospiral coding sequence (CDS) LIC11087, genome annotated as hypothetical outer membrane protein. The LIC11087 gene was cloned and expressed in Escherichia coli BL21 (DE3) strain by using the expression vector pAE. The recombinant protein tagged with N-terminal 6XHis was purified by metal-charged chromatography and characterized by circular dichroism (CD) spectroscopy. The recombinant protein has the ability to mediate attachment to the extracellular matrix (ECM) components, laminin and plasma fibronectin, and was named Lsa30 (Leptospiral surface adhesin of 30 kDa). Lsa30 binds to laminin and to plasma fibronectin in a dose-dependent and saturable manner, with dissociation equilibrium constants (K(D)) of 292 ± 24 nm and 157 ± 35 nm, respectively. Moreover, the Lsa30 is a plasminogen (PLG) receptor, capable of generating plasmin, in the presence of activator. This protein may interfere with the complement cascade by interacting with C4bp regulator. The Lsa30 is probably a new surface protein of Leptospira as revealed by immunofluorescence assays with living organisms and the reactivity with antibodies present in serum samples of experimentally infected hamsters. Thus, Lsa30 is a novel versatile protein that may play a role in mediating adhesion and may help pathogenic Leptospira to overcome tissue barriers and to escape the immune system.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Proteínas del Sistema Complemento/inmunología , Antígenos de Histocompatibilidad/metabolismo , Leptospira interrogans/metabolismo , Leptospirosis/metabolismo , Plasminógeno/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Secuencia de Aminoácidos , Animales , Proteína de Unión al Complemento C4b , Cricetinae , Femenino , Antígenos de Histocompatibilidad/genética , Humanos , Leptospira interrogans/química , Leptospira interrogans/genética , Leptospirosis/inmunología , Leptospirosis/microbiología , Ratones , Ratones Endogámicos BALB C , Datos de Secuencia Molecular , Plasminógeno/genética , Unión Proteica , Alineación de Secuencia
20.
J Biomed Biotechnol ; 2012: 758513, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23118516

RESUMEN

Leptospirosis is considered a neglected infectious disease of human and veterinary concern. Although extensive investigations on host-pathogen interactions have been pursued by several research groups, mechanisms of infection, invasion and persistence of pathogenic Leptospira spp. remain to be elucidated. We have reported the ability of leptospires to bind human plasminogen (PLG) and to generate enzimatically active plasmin (PLA) on the bacteria surface. PLA-coated Leptospira can degrade immobilized ECM molecules, an activity with implications in host tissue penetration. Moreover, we have identified and characterized several proteins that may act as PLG-binding receptors, each of them competent to generate active plasmin. The PLA activity associated to the outer surface of Leptospira could hamper the host immune attack by conferring the bacteria some benefit during infection. The PLA-coated leptospires obstruct complement C3b and IgG depositions on the bacterial surface, most probably through degradation. The decrease of leptospiral opsonization might be an important aspect of the immune evasion strategy. We believe that the presence of PLA on the leptospiral surface may (i) facilitate host tissue penetration, (ii) help the bacteria to evade the immune system and, as a consequence, (iii) permit Leptospira to reach secondary sites of infection.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fibrinolisina/metabolismo , Interacciones Huésped-Patógeno , Leptospira/citología , Leptospira/metabolismo , Plasminógeno/metabolismo , Aminocaproatos/metabolismo , Extractos Celulares , Complemento C3b/metabolismo , Electroforesis en Gel Bidimensional , Activación Enzimática , Fibronectinas/metabolismo , Humanos , Proteínas Inmovilizadas/metabolismo , Sueros Inmunes/inmunología , Inmunoglobulina G/metabolismo , Laminina/metabolismo , Leptospirosis/sangre , Leptospirosis/inmunología , Leptospirosis/microbiología , Viabilidad Microbiana , Microscopía Fluorescente , Unión Proteica , Proteolisis , Proteómica , Proteínas Recombinantes/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Especificidad por Sustrato
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda